Current Mechanistic and Pharmacodynamic Understanding of Melanocortin-4 Receptor Activation
Abstract
:1. Introduction
2. Agonist Induced Signaling, Desensitization, and Internalization of MC4R
2.1. Equilibrium Binding and Activation
2.2. Dynamic Signaling upon Exposure to MC4R Agonists
2.3. Evidence for Gαq Signaling
3. Feeding and Weight Loss Studies in Rodents
4. Body Weight Effects in Obese Non-Human Primates
5. Effect of Setmelanotide and LY2112688 on Cardiovascular Function
6. Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marks, D.L.; Cone, R.D. Central melanocortins and the regulation of weight during acute and chronic disease. Recent Prog. Horm. Res. 2001, 56, 359–375. [Google Scholar] [CrossRef]
- Cone, R.D. The central melanocortin system and its role in energy homeostasis. Ann. Endocrinol. 1999, 60, 3–9. [Google Scholar]
- Collet, T.H.; Dubern, B.; Mokrosinski, J.; Connors, H.; Keogh, J.M.; Mendes de Oliveira, E.; Henning, E.; Poitou-Bernert, C.; Oppert, J.M.; Tounian, P.; et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol. Metab. 2017, 6, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Clément, K.; Biebermann, H.; Farooqi, I.S.; Van der Ploeg, L.; Wolters, B.; Poitou, C.; Puder, L.; Fiedorek, F.; Gottesdiener, K.; Kleinau, G.; et al. MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat. Med. 2018, 24, 551–555. [Google Scholar] [CrossRef]
- Balthasar, N.; Coppari, R.; McMinn, J.; Shun, M.; Liu, S.M.; Charlotte, E.; Lee, C.E.; Tang, V.; Kenny, C.D.; McGovern, R.A.; et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004, 42, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S. The Role of Leptin-Melanocortin System and Human Weight Regulation: Lessons from Experiments of Nature. Ann. Acad. Med. Singapore 2009, 38, 34–44. [Google Scholar]
- Van der Klaauw, A.A.; Farooqi, I.S. The hunger genes: Pathways to obesity. Cell 2015, 161, 119–132. [Google Scholar] [CrossRef]
- Van der Ploeg, L.H.T.; Martin, W.J.; Martin, A.D.; Nargund, R.P.; Austin, C.P.; Guan, X.-M.; Drisko, J.; Cashen, D.; Sebhat, I.; Patchett, A.A.; et al. A role for the melanocortin 4 receptor in sexual function. Proc. Natl. Acad. Sci. USA 2002, 99, 11381–11386. [Google Scholar] [CrossRef]
- Martin, W.J.; MacIntyre, D.E. Melanocortin receptors and erectile function. Eur. Urol. 2004, 45, 706–713. [Google Scholar] [CrossRef]
- Kuo, J.J.; da Silva, A.A.; Tallam, L.S.; Hall, J.E. Role of adrenergic activity in pressor responses to chronic melanocortin receptor activation. Hypertension 2006, 43, 370–375. [Google Scholar] [CrossRef]
- Greenfield, J.R.; Miller, J.W.; Keogh, J.M.; Henning, E.; Satterwhite, J.H.; Cameron, G.S.; Astruc, B.; Mayer, J.P.; Brage, S.; See, T.C.; et al. Modulation of blood pressure by central melanocortinergic pathways. N. Engl. J. Med. 2009, 360, 44–52. [Google Scholar] [CrossRef]
- Tao, Y.-X. The melanocortin-4 receptor: Physiology, pharmacology, and pathophysiology. Endocr. Rev. 2010, 31, 506–543. [Google Scholar] [CrossRef]
- MacNeil, D.J.; Howard, A.D.; Guan, X.-M.; Fong, T.M.; Nargund, R.P.; Bednarek, M.A.; Goulet, M.T.; Weinberg, D.H.; Strack, A.M.; Marsh, D.J.; et al. The role of melanocortins in body weight regulation: Opportunities for the treatment of obesity. Eur. J. Pharmacol. 2002, 450, 93–109. [Google Scholar] [CrossRef]
- Palucki, B.L.; Park, M.K.; Nargund, R.P.; Ye, Z.X.; Sebhat, I.K.; Pollard, P.G.; Kalyani, R.N.; Tang, R.; MacNeil, T.; Weinberg, D.H.; et al. Discovery of (2S)-N-[(1R)-2-[4-cyclohexyl-4-[[(1,1-dimethylethyl)amino]carbonyl]-1-piperidinyl]-1-[(4-fluorophenyl)methyl]-2-oxoethyl]-4-methyl-2-piperazinecarboxamide (MB243), a potent and selective melanocortin subtype-4 receptor agonist. Bioorg. Med. Chem. Lett. 2005, 15, 171–175. [Google Scholar] [CrossRef]
- Ujjainwalla, F.; Sebhat, I.K. Small molecule ligands of the human melanocortin-4 receptor. Curr. Top. Med. Chem. 2007, 7, 1068–1084. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, W.; Tran, J.A.; Tucci, F.C.; Fleck, B.A.; Markison, S.; Wen, J.; Madan, A.; Hoare, S.R.; Foster, A.C.; et al. Identification and characterization of pyrrolidine diastereoisomers as potent functional agonists and antagonists of the human melanocortin-4 receptor. Bioorg. Med. Chem. Lett. 2008, 18, 129–136. [Google Scholar] [CrossRef]
- Krishna, R.; Gumbiner, B.; Stevens, C.; Musser, B.; Mallick, M.; Suryawanshi, S.; Maganti, L.; Zhu, H.; Han, T.H.; Scherer, L.; et al. Potent and selective agonism of the melanocortin receptor 4 with MK-0493 does not induce weight loss in obese human subjects: Energy intake predicts lack of weight loss efficacy. Clin. Pharmacol. Ther. 2009, 86, 659–666. [Google Scholar] [CrossRef]
- He, S.W.; Ye, Z.X.; Dobbelaar, P.H.; Sebhat, I.K.; Guo, L.Q.; Liu, J.; Jian, T.Y.; Lai, Y.J.; Franklin, C.L.; Bakshi, R.K.; et al. Discovery of a spiroindane based compound as a potent, selective, orally bioavailable melanocortin subtype-4 receptor agonist. Bioorg. Med. Chem. Lett. 2010, 20, 2106–2110. [Google Scholar] [CrossRef]
- Lansdell, M.I.; Hepworth, D.; Calabrese, A.; Brown, A.D.; Blagg, J.; Burring, D.J.; Wilson, P.; Fradet, D.; Brown, T.B.; Quinton, F.; et al. Discovery of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans. J. Med. Chem. 2010, 53, 3183–3197. [Google Scholar] [CrossRef]
- Todorovic, A.; Haskell-Luevano, C. A review of melanocortin receptor small molecule ligands. Peptides 2005, 26, 2026–2036. [Google Scholar] [CrossRef]
- Ericson, M.D.; Lensing, C.J.; Fleming, K.A.; Schlasner, K.N.; Doering, S.R.; Haskell-Luevano, C. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2414–2435. [Google Scholar] [CrossRef] [PubMed]
- White, W.B.; Myers, M.G.; Jordan, R.; Lucas, J. Usefulness of ambulatory blood pressure monitoring to assess the melanocortin receptor agonist bremelanotide. J. Hypertens. 2017, 35, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Clayton, A.H.; Althof, S.E.; Kingsberg, S.; DeRogatis, L.R.; Kroll, R.; Goldstein, I.; Kaminetsky, J.; Spana, C.; Lucas, J.; Jordan, R.; et al. Bremelanotide for female sexual dysfunctions in premenopausal women: A randomized, placebo-controlled dose-finding trial. Womens Health (Lond) 2016, 12, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Kievit, P.; Halem, H.; Marks, D.L.; Dong, J.Z.; Glavas, M.M.; Sinnayah, P.; Pranger, L.; Cowley, M.A.; Grove, K.L.; Culler, M.D. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 2013, 62, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, L.H.T. Rhythm Pharmaceuticals, Boston, MA, USA. Unpublished work. 2012. [Google Scholar]
- Yang, L.K.; Tao, Y.X. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2486–2495. [Google Scholar] [CrossRef] [PubMed]
- Büch, T.R.; Heling, D.; Damm, E.; Gudermann, T.; Breit, A. Pertussis toxin-sensitive signaling of melanocortin-4 receptors in hypothalamic GT1-7 cells defines agouti-related protein as a biased agonist. J. Biol. Chem. 2009, 284, 26411–26420. [Google Scholar] [CrossRef]
- Kumar, K.G.; Sutton, G.M.; Dong, J.Z.; Roubert, P.; Plas, P.; Halem, H.A.; Culler, M.D.; Yang, H.; Dixit, V.D.; Butler, A.A. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides 2009, 30, 1892–1900. [Google Scholar] [CrossRef] [PubMed]
- Shinyama, H.; Masuzaki, H.; Fang, H.; Flier, J.S. Regulation of melanocortin-4 receptor signaling: Agonist-mediated desensitization and internalization. Endocrinology 2003, 144, 1301–1314. [Google Scholar] [CrossRef]
- Mayer, J.P.; Hsiung, H.M.; Flora, D.B.; Edwards, P.; Smith, D.P.; Zhang, X.Y.; Gadski, R.A.; Heiman, M.L.; Hertel, J.L.; Emmerson, P.J.; et al. Discovery of a beta-MSH-derived MC-4R selective agonist. J. Med. Chem. 2005, 48, 3095–3098. [Google Scholar] [CrossRef] [PubMed]
- Nickolls, S.A.; Fleck, B.; Hoare, S.R.; Maki, R.A. Functional selectivity of melanocortin 4 receptor peptide and nonpeptide agonists: Evidence for ligand-specific conformational states. J. Pharmacol. Exp. Ther. 2005, 313, 1281–1288. [Google Scholar] [CrossRef]
- Haskell-Luevano, C.; Monck, E.K. Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul. Pept. 2001, 99, 1–7. [Google Scholar] [CrossRef]
- Nijenhuis, W.A.; Oosterom, J.; Adan, R.A. AgRP(83-132) acts as an inverse agonist on the human melanocortin-4 receptor. Mol. Endocrinol. 2001, 15, 164–171. [Google Scholar] [CrossRef]
- Molden, B.M.; Cooney, K.A.; Wes, T.K.; Van Der Ploeg, L.H.; Baldini, G. Temporal cAMP Signaling Selectivity by Natural and Synthetic MC4R Agonists. Mol. Endocrinol. 2015, 29, 1619–1633. [Google Scholar] [CrossRef]
- Granell, S.; Molden, B.M.; Baldini, G. Exposure of MC4R to agonist in the endoplasmic reticulum stabilizes an active conformation of the receptor that does not desensitize. Proc. Natl. Acad. Sci. USA 2013, 110, E4733–E4742. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Tao, Y.X. Pharmacological chaperones for the misfolded melanocortin-4 receptor associated with human obesity. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2496–2507. [Google Scholar] [CrossRef]
- Gao, Z.; Lei, D.; Welch, J.; Le, K.; Lin, J.; Feng, S.; Duhl, D. Agonist-dependent internalization of the human melanocortin-4 receptors in human embryonic kidney 293 cells. J. Pharm. Exp. Ther. 2003, 307, 870–877. [Google Scholar] [CrossRef]
- Cai, M.; Varga, E.V.; Stankova, M.; Mayorov, A.; Perry, J.W.; Yamamura, H.I.; Trivedi, D.; Hruby, V.J. Cell signaling and trafficking of human melanocortin receptors in real time using two-photon fluorescence and confocal laser microscopy: Differentiation of agonists and antagonists. Chem. Biol. Drug Des. 2006, 68, 183–193. [Google Scholar] [CrossRef]
- Li, Y.Q.; Shrestha, Y.; Pandey, M.; Chen, M.; Kablan, A.; Gavrilova, O.; Offermanns, S.; Weinstein, L.S. G(q/11)α and G(s)α mediate distinct physiological responses to central melanocortins. J. Clin. Investig. 2016, 126, 40–49. [Google Scholar] [CrossRef]
- Ghamari-Langroudi, M.; Digby, G.J.; Sebag, J.A.; Millhauser, G.L.; Palomino, R.; Matthews, R.; Gillyard, T.; Panaro, B.L.; Tough, I.R.; Cox, H.M.; Denton, J.S.; et al. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 2015, 520, 94–98. [Google Scholar] [CrossRef]
- Vongs, A.; Lynn, N.M.; Rosenblum, C.I. Activation of MAP kinase by MC4-R through PI3 kinase. Regul. Pept. 2004, 120, 113–118. [Google Scholar] [CrossRef]
- Kuo, J.J.; da Silva, A.A.; Hall, J.E. Hypothalamic melanocortin receptors and chronic regulation of arterial pressure and renal function. Hypertension 2003, 41, 768–774. [Google Scholar] [CrossRef]
- Ni, X.-P.; Butler, A.A.; Cone, R.D.; Humphreys, M.H. Central receptors mediating the cardiovascular actions of melanocyte stimulating hormones. J. Hypertension 2006, 24, 2239–2246. [Google Scholar] [CrossRef]
- Humphreys, M.H.; Ni, X.-P.; Pearce, D. Cardiovascular effects of melanocortins. Eur. J. Pharmacol. 2011, 600, 43–52. [Google Scholar] [CrossRef]
- Hill, C.; Dunbar, J.C. The effects of acute and chronic alpha melanocyte stimulating hormone (alphaMSH) on cardiovascular dynamics in conscious rats. Peptides 2002, 23, 1625–1630. [Google Scholar] [CrossRef]
- Matsumura, K.; Tsuchihashi, T.; Abe, I.; Iida, M. Central alpha-melanocyte-stimulating hormone acts at melanocortin-4 receptor to activate sympathetic nervous system in conscious rabbits. Brain Res. 2002, 948, 145–148. [Google Scholar] [CrossRef]
- Nordheim, U.; Nicholson, J.R.; Dokladny, K.; Dunant, P.; Hofbauer, K.G. Cardiovascular responses to melanocortin 4-receptor stimulation in conscious unrestrained normotensive rats. Peptides 2006, 27, 438–443. [Google Scholar] [CrossRef]
- Trivedi, P.; Jiang, M.; Tamvakopoulos, C.C.; Shen, X.; Yu, H.; Mock, S.; Fenyk-Melody, J.; Van der Ploeg, L.H.T.; Guan, X.M. Exploring the site of anorectic action of peripherally administered synthetic melanocortin peptide MT-II in rats. Brain Res. 2003, 977, 221–230. [Google Scholar] [CrossRef]
- Lotta, L.A.; Mokrosin’ski, J.; de Oliveira, E.M.; Li, C.; Sharp, S.J.; Luan, J.; Brouwers, B.; Ayinampudi, V.; Bowker, N.; Kerrison, N.; et al. Human Gain-of-Function MC4R Variants. Cell 2019, 177, 597–607. [Google Scholar] [CrossRef] [PubMed]
Setmelanotide: | Ac-Arg-cyclo(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-amide |
LY2112688: | Ac-D-Arg-cyclo(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-amide |
MC4-NN-0453: | |
MK-0493: | |
AZD2820: | Structure undisclosed |
Compound | Binding Assay Ki [nM] | cAMP Assay EC50 [nM] | ||||||
---|---|---|---|---|---|---|---|---|
hMC1R | hMC3R | hMC4R | hMC5R | hMC1R | hMC3R | hMC4R | hMC5R | |
α-MSH | 0.32 | 15.5 | 41.4 | 332 | 1.01 | 1.04 | 4.7 | 10.5 |
MT-II | 0.27 | 24 | 2.66 | 23.1 | 0.2 | 0.51 | 0.05 | 5.33 |
Setmelanotide | 3.9 | 10 | 2.1 | 430 | 5.8 | 5.3 | 0.27 | 1600 |
LY2112688 | 4 | 35.1 | 1.84 | 5160 | 8.12 | 10.3 | 0.09 | 5760 |
MC4R Ligands and Incubation Concentration | Dynamic cAMP Response | Comment | |||
---|---|---|---|---|---|
Time = 0 min | Time = 10–20 min | Time = 20–50 min | Time = 55–60 min | ||
Initial (time 0–10 min) | Ligand challenge at 10 min | Ligand washed out after 10 min incubation and measured cAMP 20–30 min post washing | cAMP following 500 nM α-MSH re-challenge at 55 min | ||
α-MSH, 200 nM | − | ++++ | − | ++++ | Full reversal of signal upon washing out |
LY2112688, 100 nM | − | ++++ | − | ++++ | Full reversal of signal upon washing out |
THIQ, 1 µM | − | ++++ | ++ | ++++ | Partial reversal upon washout |
MT-II, 200 nM | − | ++++ | ++++ | ++++ | No reversal upon washout |
RM-511, 100 nM | − | ++++ | ++++ | ++++ | No reversal upon washout |
| |||||
Ligand | R | MC4R Binding Ki (nM) | MC4R EC50 (nM) (Intrinsic Activity) | ||
cAMP Accumulation | Calcium Mobilization | Internalization | |||
α-MSH * | Acetyl-SYSMEHFRWGKPV-amide | 50.1 | 21.4 (100) | 129 (100) | 28.8 (100) |
β-MSH * | DEGPYRMEHFRWGSPPKD | 18.6 | 11.2 (83) | 174 (94) | 43.7 (118) |
γ-MSH * | YVMGHFRWDRFG | 589 | 631 (80) | >1000 (62) | >1000 (75) |
des-acetyl-α-MSH | SYSMEHFRWGKPV-amide | 30.2 | 17.4 (84) | 110 (96) | 30.2 (107) |
NDP-α-MSH | Acetyl-SYS(Nle)H(D-Phe)-RWGKPV-amide | 3.98 | 1.38 (112) | 120 (80) | 7.24 (89) |
THIQ | | 10.7 | 1.32 (98) | 692 (7) | 0.81 (29) ** |
NBI-55886 | | 9.55 | 331 (73) | >1000 (40) | 3.47 (16) ** |
NBI-56297 | | 20 | 129 (81) | >1000 (23) | 7.94 (−5) ** |
NBI-56453 | | 74.1 | 513 (103) | 45.7 (7) | 5.25 (27) ** |
NBI-58702 | | 6.31 | 43 (110) | 2.4 (20) | 7.59 (38) ** |
NBI-58704 | | 13.5 | 204 (149) | 17.8 (23) | 145 (34) ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Garfield, A.S.; Shah, B.; Kleyn, P.; Ichetovkin, I.; Moeller, I.H.; Mowrey, W.R.; Van der Ploeg, L.H.T. Current Mechanistic and Pharmacodynamic Understanding of Melanocortin-4 Receptor Activation. Molecules 2019, 24, 1892. https://doi.org/10.3390/molecules24101892
Sharma S, Garfield AS, Shah B, Kleyn P, Ichetovkin I, Moeller IH, Mowrey WR, Van der Ploeg LHT. Current Mechanistic and Pharmacodynamic Understanding of Melanocortin-4 Receptor Activation. Molecules. 2019; 24(10):1892. https://doi.org/10.3390/molecules24101892
Chicago/Turabian StyleSharma, Shubh, Alastair S. Garfield, Bhavik Shah, Patrick Kleyn, Ilia Ichetovkin, Ida Hatoum Moeller, William R. Mowrey, and Lex H.T. Van der Ploeg. 2019. "Current Mechanistic and Pharmacodynamic Understanding of Melanocortin-4 Receptor Activation" Molecules 24, no. 10: 1892. https://doi.org/10.3390/molecules24101892
APA StyleSharma, S., Garfield, A. S., Shah, B., Kleyn, P., Ichetovkin, I., Moeller, I. H., Mowrey, W. R., & Van der Ploeg, L. H. T. (2019). Current Mechanistic and Pharmacodynamic Understanding of Melanocortin-4 Receptor Activation. Molecules, 24(10), 1892. https://doi.org/10.3390/molecules24101892