Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes
Abstract
1. Introduction
2. Results
3. Materials and Methods
3.1. General
3.2. Representative Procedure for the Oxidation of Diarylmethane
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, B.C.; Zhou, P.; Davis, F.A.; Ciganek, E. Organic Reactions; Overman, L.E., Ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Wu, S.B.; Long, C.; Kennelly, E.J. Structural Diversity and Bioactivities of Natural Benzophenones. Nat. Prod. Rep. 2014, 31, 1158–1174. [Google Scholar] [CrossRef] [PubMed]
- Belluti, F.; de Simone, A.; Tarozzi, A.; Bartolini, M.; Djemil, A.; Bisi, A.; Gobbi, S.; Montanari, S.; Cavalli, A.; Andrisano, V.; et al. Fluorinated Benzophenone Derivatives: Balanced Multipotent Agents for Alzheimer’s Disease. Eur. J. Med. Chem. 2014, 78, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Vooturi, S.K.; Cheung, C.M.; Rybak, M.J.; Firestine, S.M. Design, Synthesis and Structure-Activity Relationships of Benzophenone-Based Tetraamides as Novel Antibacterial Agents. J. Med. Chem. 2009, 52, 5020–5031. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Yasuda, T.; Yang, Y.S.; Zhang, Q.; Adachi, C. Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full-Color Delayed Fluorescence OLEDs. Angew. Chem. Int. Ed. 2014, 53, 6402–6406. [Google Scholar] [CrossRef] [PubMed]
- Ryabchun, A.; Sakhno, O.; Wegener, M. Conventional Elastomers Doped with Benzophenone Derivatives as Effective Media for All-optical Fabrication of Tunable Diffraction Elements. RSC Adv. 2016, 6, 51791–51800. [Google Scholar] [CrossRef]
- Al-hunaiti, A.; Raisanen, M.; Repo, T. From DNA to Catalysis: A Thymine-Acetate Ligated Non-Heme Iron(III) Catalyst for Oxidative Activation of Aliphatic C-H Bonds. Chem. Commun. 2016, 52, 2043–2046. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Li, S.; Pan, Y.; Xu, Y.; Wang, H. The Indium-Catalysed Hydration of Alkynes Using Substoichiometric Amounts of PTSA as Additive. Tetrahedron 2013, 69, 3775–3781. [Google Scholar] [CrossRef]
- Iosub, A.V.; Stahl, S.S. Palladium-Catalyzed Aerobic Oxidative Dehydrogenation of Cyclohexenes to Substituted Arene Derivatives. J. Am. Chem. Soc. 2015, 137, 3454–3457. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ferrate, O.; Britovsek, G.J.; Claver, C.; van Leeuwen, P.W. C-H Benzylic Oxidation Promoted by Dinuclear Iron DBDOC Iminopyridine Complexes. Inorg. Chim. Acta 2015, 431, 156–160. [Google Scholar] [CrossRef]
- Sartori, G.; Maggi, R. Advances in Friedel–Crafts Acylation Reactions: Catalytic and Green Processes; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Tojo, G.; Fernández, M.I. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Colquhoun, H.; Thompson, D.; Twigg, M.V. Carbonylation: Direct Synthesis of Carbonyl Compounds; Springer Science & Business Media: New York, NY, USA, 1991. [Google Scholar]
- Beller, M.; Wu, X.-F. Transition-Metal-Catalyzed Carbonylation Reactions; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hughes, M.D.; Xu, Y.J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D.I.; Carley, A.F.; Attard, G.A.; Hutchings, G.J.; King, F.; et al. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation Under Mild Conditions. Nature 2005, 437, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Liu, M.J.; Wang, Y.Q.; Fan, H.Y.; Wu, J.; Huang, C.; Hou, H.W. Cu(I) Coordination Polymers as the Green Heterogeneous Catalysts for Direct C−H Bonds Activation of Arylalkanes to Ketones in Water with Spatial Confinement Effect. Inorg. Chem. 2017, 56, 13329–13336. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; Liu, Y.; Ma, X.W.; Liu, P.; Gu, C.Z.; Dai, B. Cu(II)-Catalyzed Ligand-Free Oxidation of Diarylmethanes and Second Alcohols in Water. Chin. J. Chem. 2017, 35, 1391–1395. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Itami, K. Tert-Butoxide-Mediated C-H Bond Arylation of Aromatic Compounds with Haloarenes. ChemCatChem 2011, 3, 827–829. [Google Scholar] [CrossRef]
- Shirakawa, E.; Hayashi, T. Transition-Metal-Free Coupling Reactions of Aryl Halides. Chem. Lett. 2012, 41, 130–134. [Google Scholar] [CrossRef]
- Mehta, V.P.; Punji, B. Recent Advances in Transition-Metal-Free Direct C-C and C-Heteroatom Bond Forming Reactions. RSC Adv. 2013, 3, 11957–11986. [Google Scholar] [CrossRef]
- Jin, F.; Han, W. Transition-Metal-Free, Ambient-Pressure Carbonylative Cross-Coupling Reactions of Aryl Halides with Potassium Aryltrifluoroborates. Chem. Commun. 2015, 51, 9133–9136. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.S. Palladium-Catalyzed Oxidation of Organic Chemicals with O2. Science 2005, 309, 1824–1826. [Google Scholar] [CrossRef] [PubMed]
- Que, L.; Tolman, W.B. Biologically Inspired Oxidation Catalysis. Nature 2008, 455, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chem. Rev. 2005, 105, 2329–2363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tang, C.; Jiao, N. Recent Advances in Copper-Catalyzed Dehydrogenative Functionalization via A Single Electron Transfer (SET) Process. Chem. Soc. Rev. 2012, 41, 3464–3484. [Google Scholar] [CrossRef] [PubMed]
- Pattillo, C.C.; Strambeanu, L.I.; Calleja, P.; Vermeulen, N.A.; Mizuno, T.; White, M.C. Aerobic Linear Allylic C-H Amination: Overcoming Benzoquinone Inhibition. J. Am. Chem. Soc. 2016, 138, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Saha, D.; Saha, D.; Guin, J. Aerobic Direct C(sp2)-H Hydroxylation of 2-Arylpyridines by Palladium Catalysis Induced with Aldehyde Auto-Oxidation. ACS Catal. 2016, 6, 6050–6054. [Google Scholar] [CrossRef]
- Anson, C.W.; Ghosh, S.; Hammes-Schiffer, S.; Stahl, S.S. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2016, 138, 4186–4193. [Google Scholar] [CrossRef] [PubMed]
- Brink, G.J.T.; Arends, I.W.C.E.; Sheldon, R.A. Green, Catalytic Oxidation of Alcohols in Water. Science 2000, 287, 1636–1639. [Google Scholar] [CrossRef] [PubMed]
- Brice, J.L.; Harang, J.E.; Timokhin, V.I.; Anastasi, N.R.; Stahl, S.S. Aerobic Oxidative Amination of Unactivated Alkenes Catalyzed by Palladium. J. Am. Chem. Soc. 2005, 127, 2868–2869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Yu, J.Q. Pd(II)-Catalyzed Hydroxylation of Arenes with 1 atm of O2 or Air. J. Am. Chem. Soc. 2009, 131, 14654–14655. [Google Scholar] [CrossRef] [PubMed]
- Chiba, S.; Zhang, L.; Lee, J.Y. Copper-Catalyzed Synthesis of Azaspirocyclohexadienones from Alpha-Azido-N-Arylamides under an Oxygen Atmosphere. J. Am. Chem. Soc. 2010, 132, 7266–7267. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Sterckx, H.; Sambiagio, C.; Maes, B.U.W. Copper-Catalyzed Aerobic Oxygenation of Benzylpyridine N-Oxides and Subsequent Post-Functionalization. Adv. Synth. Catal. 2017, 359, 3226–3236. [Google Scholar] [CrossRef]
- Nambo, M.; Keske, E.C.; Rygus, J.P.G.; Yim, J.C.H.; Crudden, C.M. Development of Versatile Sulfone Electrophiles for Suzuki-Miyaura Cross-Coupling Reactions. ACS Catal. 2016, 7, 1108–1112. [Google Scholar] [CrossRef]
- Li, S.; Zhu, B.; Lee, R.; Qiao, B.; Jiang, Z. Visible light-induced selective aerobic oxidative transposition of vinyl halides using a tetrahalogenoferrate(III) complex catalyst. Org. Chem. Front. 2017, 5, 380–385. [Google Scholar] [CrossRef]
- Prebil, R.; Stavber, G.; Stavber, S. Aerobic Oxidation of Alcohols by Using a Completely Metal-Free Catalytic System. Eur. J. Org. Chem. 2014, 2014, 395–402. [Google Scholar] [CrossRef]
- Chinnagolla, R.K.; Jeganmohan, M. Regioselective Ortho-Arylation and Alkenylation of N-Alkyl Benzamides with Boronic Acids via Ruthenium-Catalyzed C–H Bond Activation: An Easy Route to Fluorenones Synthesis. Org. Lett. 2012, 14, 5246–5249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ji, X.; Jiang, S.S.; Liu, L.L.; Weeks, B.L.; Zhang, Z. Highly Efficient Synthesis of 9-Fluorenones from 9H-Fluorenes by Air Oxidation. Green Chem. 2011, 13, 1891–1896. [Google Scholar] [CrossRef]
- Yip, W.T.; Levy, D.H.; Kobetic, R.; Piotrowiak, P. Energy Transfer in Bichromophoric Molecules: The Effect of Symmetry and Donor/Acceptor Energy Gap. J. Phys. Chem. A 2009, 103, 10–20. [Google Scholar] [CrossRef]
- Valášek, M.; Edelmann, K.; Gerhard, L.; Fuhr, O.; Lukas, M.; Mayor, M. Synthesis of Molecular Tripods Based on A Rigid 9,9′-Spirobifluorene Scaffold. J. Org. Chem. 2014, 79, 7342–7357. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Oisaki, K.; Kanai, M. Chemoselective Aerobic Photo-Oxidation of 9H-Fluorenes for the Synthesis of 9-Fluorenones. Tetrahedron Lett. 2015, 46, 4736–4738. [Google Scholar] [CrossRef]
- Dufresne, S.; Callaghan, L.; Skene, W.G. Conjugated Fluorenes Prepared From Azomethines Connections-II: The Effect of Alternating Fluorenones and Fluorenes on the Spectroscopic and Electrochemical Properties. J. Phys. Chem. B 2009, 113, 15541–15549. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 2a–2n are available from the authors. |
Entry a | Base | Solvent | Temp [°C] | Yield [%] b |
---|---|---|---|---|
1 | – | THF | 60 °C | – |
2 | KHMDS | THF | 60 °C | 76 |
3 | NaHMDS | THF | 60 °C | 79 |
4 | LiHMDS | THF | 60 °C | 85 |
5 | KOtBu | THF | 60 °C | 11 |
6 | NaOtBu | THF | 60 °C | 6 |
7 | LiOtBu | THF | 60 °C | trace |
8 | CS2CO3 | THF | 60 °C | – |
9 | LiHMDS | dioxane | 60 °C | 23 |
10 | LiHMDS | toluene | 60 °C | 15 |
11 | LiHMDS | DME | 60 °C | 79 |
12 | LiHMDS | CPME | 60 °C | 56 |
13 | LiHMDS | CH2Cl2 | 60 °C | 11 |
14 | LiHMDS | THF | 80 °C | 84 |
15 | LiHMDS | THF | 40 °C | 35 |
16 c | LiHMDS | THF | 60 °C | – |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Zhou, B.; Chen, P.; Zou, D.; Luo, Q.; Ren, W.; Li, L.; Fan, L.; Li, J. Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes. Molecules 2018, 23, 1922. https://doi.org/10.3390/molecules23081922
Yang F, Zhou B, Chen P, Zou D, Luo Q, Ren W, Li L, Fan L, Li J. Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes. Molecules. 2018; 23(8):1922. https://doi.org/10.3390/molecules23081922
Chicago/Turabian StyleYang, Fan, Bihui Zhou, Pu Chen, Dong Zou, Qiannan Luo, Wenzhe Ren, Linlin Li, Limei Fan, and Jie Li. 2018. "Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes" Molecules 23, no. 8: 1922. https://doi.org/10.3390/molecules23081922
APA StyleYang, F., Zhou, B., Chen, P., Zou, D., Luo, Q., Ren, W., Li, L., Fan, L., & Li, J. (2018). Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes. Molecules, 23(8), 1922. https://doi.org/10.3390/molecules23081922