Potential Mechanism of Action of Cyclosporin A in Human Dermal Fibroblasts—Transcriptomic Analysis of CYPs
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Cell Viability
4.3. Cell Culture with CsA
4.4. RNA Isolation
4.5. Microarray HGU-133A_2.0 Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Colombo, D.; Ammirati, E. Cyclosporine in transplantation—A history of converging timelines. J. Biol. Regul. Homeost. Agents 2011, 25, 493–504. [Google Scholar] [PubMed]
- Dehesa, L.; Abuchar, A.; Nuno-Gonzalez, A.; Vitiello, M.; Kerdel, F.A. The use of cyclosporine in dermatology. J. Drugs Dermatol. 2012, 11, 979–987. [Google Scholar] [PubMed]
- Schultz, C. Safety and efficacy of cyclosporine in the treatment of chronic dry eye. Ophthalmol. Eye Dis. 2014, 6, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Amor, K.T.; Ryan, C.; Menter, A. The use of cyclosporine in dermatology: Part I. J. Am. Acad. Dermatol. 2010, 63, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Yamamoto, S.; Saito, M.; Shiraga, T.; Takagi, A. Effect of cyclosporine and tacrolimus on cytochrome p450 activities in human liver microsomes. Yakugaku Zasshi 2007, 127, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R. The cytochrome p450 homepage. Hum. Genom. 2009, 4, 59–65. [Google Scholar]
- Zanger, U.M.; Schwab, M.X. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2009, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Omura, T. Recollection of the early years of the research on cytochrome P450. Proc. Jpn. Acad. Ser. B Phys. 2011, 87, 617–640. [Google Scholar] [CrossRef] [PubMed]
- Saeki, M.; Saito, Y.; Nagano, M.; Teshima, R.; Ozawa, S.; Sawada, J. mRNA expression of multiple cytochrome p450 isozymes in four types of cultured skin cells. Int. Arch. Allergy Immunol. 2002, 127, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Honkakoski, P.; Hukkanen, J.; Raunio, H. Inhibition and induction of human cytochrome P450 enzymes: Current status. Arch. Toxicol. 2008, 82, 667–715. [Google Scholar] [CrossRef] [PubMed]
- Oesch, F.; Fabian, E.; Guth, K.; Landsiedel, R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch. Toxicol. 2014, 88, 2135–2190. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.E.; Biggi, W.A.; Dannecker, R.; Fischer, V. Uptake and metabolism of cyclosporin A and SDZ IMM 125 in the human in vitro skin2 dermal and barrier function models. Life Sci. 1995, 57, 3215–3224. [Google Scholar] [CrossRef]
- Tepeoğlu, M.; Ayva, Ş.; Ok Atılgan, A.; Tunca, M.Z.; Özdemir, B.H.; Moray, G.; Yıldırım, S.; Arslan, G.; Haberal, M. Nonmelanoma skin cancer after kidney transplant. Exp. Clin. Transplant. 2014, 12, 233–237. [Google Scholar] [PubMed]
- Slominski, A.; Zbytek, B.; Nikolakis, G.; Manna, P.R.; Skobowiat, C.; Zmijewski, M.; Li, W.; Janjetovic, Z.; Postlethwaite, A.; Zouboulis, C.C.; et al. Steroidogenesis in the skin: Implications for local immune functions. J. Steroid Biochem. Mol. Biol. 2013, 137, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Semak, I.; Zbytek, B.; Pisarchik, A.; Li, W.; Zjawiony, J.; Tuckey, R.C. Cytochromes P450 and skin cancer: Role of local endocrine pathways. Anticancer Agents Med. Chem. 2014, 14, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Furlanut, M.; Baraldo, M.; Pea, F.; Marzocchi, V.; Croattino, L.; Galla, F. Blood concentrations and clinical effect of cyclosporin in psoriasis. Ther. Drug Monit. 1996, 18, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Heydendael, V.M.R.; Spuls, P.I.; Ten Berge, I.J.M.; Opmeer, B.C.; Bos, J.D.; de Rie, M.A. Cyclosporin trough levels: Is monitoring necessary during short-term treatment in psoriasis? A systematic review and clinical data on trough levels. Br. J. Dermatol. 2002, 147, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, Y.; Ozawa, A. Optimal time for therapeutic drug monitoring of cyclosporine microemulsion in patients with psoriasis. Int. J. Dermatol. 2007, 46, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Cilião, H.L.; Ribeiro, D.L.; Camargo-Godoy, R.B.; Specian, A.F.; Serpeloni, J.M.; Cólus, I.M. Cytotoxic and genotoxic effects of high concentrations of the immunosuppressive drugs cyclosporine and tacrolimus in MRC-5 cells. Exp. Toxicol. Pathol. 2015, 67, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Frušić-Zlotkin, M.; Soroka, Y.; Tivony, R.; Larush, L.; Verkhovsky, L.; Brégégère, F.M.; Neuman, R.; Magdassi, S.; Milner, Y. Penetration and biological effects of topically applied cyclosporin A nanoparticles in a human skin organ culture inflammatory model. Exp. Dermatol. 2012, 21, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.J.; Palming, J.; Rizell, M.; Aureliano, M.; Carvalho, E.; Svensson, M.K.; Eriksson, J.W. Cyclosporine A and tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: Increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents. J. Clin. Endocrinol. Metab. 2014, 99, E1885–E1894. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.P.; Cheng, Z.; Jiang, J.; Ke, Y.; Liu, Z. Cyclosporin A upregulates ETB receptor in vascular smooth muscle via activation of mitogen-activating protein kinases and NF-κB pathways. Toxicol. Lett. 2015, 235, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Daheb, K.; Lipman, M.L.; Hildgen, P.; Roy, J.J. Artificial neural network modeling for drug dialyzability prediction. J. Pharm. Pharm. Sci. 2013, 16, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Alvarez, R.; Chavoya, A.; Mendez-Vazquez, A. Discovery of possible gene relationships through the application of self-organizing maps to DNA microarray databases. PLoS ONE 2014, 9, e93233. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, K.; Martin-Hirsch, P.L.; Martin, F.L. CYP1B1 and hormone-induced cancer. Cancer Lett. 2012, 324, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Sugino, N. Molecular mechanisms of luteinization. Obstet. Gynecol. Sci. 2014, 57, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.S.; Yang, K.C.; Zheng, S.K.; Chiou, L.L.; Hsu, W.M.; Lin, F.H.; Huang, G.T.; Lee, H.S. The prediction of drug metabolism using scaffold-mediated enhancement of the induced cytochrome P450 activities in fibroblasts by hepatic transcriptional regulators. Biomaterials 2012, 33, 5187–5197. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Miki, Y.; Abe, K.; Hatori, M.; Hosaka, M.; Kariya, Y.; Kakuo, S.; Fujimura, T.; Hachiya, A.; Honma, S.; et al. Sex steroid synthesis in human skin in situ: The roles of aromatase and steroidogenic acute regulatory protein in the homeostasis of human skin. Mol. Cell. Endocrinol. 2012, 362, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Arnett, D.K.; Parnell, L.D.; Lai, C.-Q.; Straka, R.J.; Hopkins, P.N.; An, P.; Feitosa, M.F.; Ordovás, J.M. The effect of CYP7A1 polymorphisms on lipid responses to fenofibrate. J. Cardiovasc. Pharmacol. 2012, 59, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Yengi, L.G.; Xiang, Q.; Pan, J.; Scatina, J.; Kao, J.; Ball, S.E.; Fruncillo, R.; Ferron, G.; Roland Wolf, C. Quantitation of cytochrome P450 mRNA levels in human skin. Anal. Biochem. 2003, 316, 103–110. [Google Scholar] [CrossRef]
- Smith, G.; Ibbotson, S.H.; Comrie, M.M.; Dawe, R.S.; Bryden, A.; Ferguson, J.; Wolf, C.R. Regulation of cutaneous drug-metabolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br. J. Dermatol. 2006, 155, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Korosec, T.; Acimovic, J.; Seliskar, M.; Kocjan, D.; Tacer, K.F.; Rozman, D.; Urleb, U. Novel cholesterol biosynthesis inhibitors targeting human lanosterol 14alpha-demethylase (CYP51). Bioorg. Med. Chem. 2008, 16, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Khambatta, Z.S.; Hayden, P.J.; Bolmarcich, J.; Binder, R.L.; Robinson, M.K.; Carr, G.J.; Tiesman, J.P.; Jarrold, B.B.; Osborne, R.; et al. Xenobiotic metabolism gene expression in the EpiDermin vitro 3D human epidermis model compared to human skin. Toxicol. In Vitro 2010, 24, 1450–1463. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Hoffman, S.M.G.; Keeney, D.S. Epidermal CYP2 family cytochromes P450. Toxicol. Appl. Pharmacol. 2004, 195, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Neis, M.M.; Ladd, P.A.; Keeney, D.S. Differentiation-specific factors modulate epidermal CYP1-4 gene expression in human skin in response to retinoic acid and classic aryl hydrocarbon receptor ligands. J. Pharmacol. Exp. Ther. 2006, 319, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Gene Symbol | Fold Change | p Value | SOFM Neuron | Biological Process | ||
---|---|---|---|---|---|---|
8 h vs. 0 | 24 h vs. 0 | 48 h vs. 0 | ||||
CYP19A1 | 1.72 | 1.07 | 1.24 | 0.0006 | 2 | steroids biosynthesis and metabolism |
CYP1B1 | 1.52 | 1.39 | 1.05 | 0.0030 | 2, 3 | steroids metabolism |
CYP2F1 | 1.26 | 1.18 | 1.09 | 0.0050 | 2 | metabolism and synthesis of lipids, cholesterol, steroids |
CYP7A1 | 1.22 | 1.16 | 1.16 | 0.0330 | 2 | steroids biosynthesis |
CYP17A1 | 1.20 | 1.11 | −1.04 | 0.0500 | 2 | biosynthesis of cholesterol, lipids, steroids |
No. | Probe ID | Transcript | NHDFs Control (0) Mean [log2FS] | NHDFs with CsA (8 h) Mean [log2FS] | t Test | SOFM Neuron |
---|---|---|---|---|---|---|
1 | 202436_s_at | 1B1 | 12.24 | 12.64 | ↑ | 2 |
2 | 208131_s_at | 8A1 | 12.15 | 12.27 | NS | |
3 | 202435_s_at | 1B1 | 11.32 | 11.77 | ↑ | 2 |
4 | 202437_s_at | 1B1 | 10.78 | 11.38 | ↑ | 3 |
5 | 216661_x_at | 2C19/9 | 8.62 | 8.62 | NS | |
6 | 209975_at | 2.E1 | 8.46 | 8.46 | NS | |
7 | 202314_at | 51A1 | 8.39 | 8.85 | ↑ | 3 |
8 | 210726_at | 3A4 | 7.96 | 8.03 | NS | |
9 | 219825_at | 26B1 | 7.83 | 7.71 | NS | |
10 | 214234_s_at | 3A5 | 7.81 | 7.90 | NS | |
11 | 216025_x_at | 2C19/9 | 7.75 | 7.60 | NS | |
12 | 209148_at | 2C8 | 7.58 | 7.71 | NS | |
13 | 203979_at | 27A1 | 7.49 | 7.62 | NS | |
14 | 219565_at | 20A1 | 7.47 | 7.49 | NS | |
15 | 205998_x_at | 3A4 | 6.42 | 6.59 | NS | |
16 | 207244_x_at | 2A6 | 6.32 | 6.32 | NS | |
17 | 203475_at | 19A1 | 6.25 | 7.04 | ↑ | 2 |
18 | 220432_s_at | 39A1 | 5.47 | 5.52 | NS | |
19 | 215103_at | 2C18 | 5.47 | 5.34 | NS | |
20 | 214630_at | 11B2 | 5.25 | 5.34 | NS | |
21 | 215982_s_at | 21A2 | 5.23 | 5.33 | NS | |
22 | 214419_s_at | 2C9 | 5.16 | 5.10 | NS | |
23 | 202434_s_at | 1B1 | 5.16 | 5.50 | ↑ | 2 |
24 | 209976_s_at | 2.E1 | 4.94 | 4.75 | NS | |
25 | 207498_s_at | 2D6 | 4.69 | 4.45 | ↓ | 1 |
26 | 216607_s_at | 51A1 | 4.63 | 4.56 | NS | |
27 | 1494_f_at | 2A6 | 4.63 | 4.69 | NS | |
28 | 220562_at | 2W1 | 4.62 | 4.54 | NS | |
29 | 211231_x_at | 4A11 | 4.55 | 4.74 | NS | |
30 | 207386_at | 7B1 | 4.51 | 4.69 | NS | |
31 | 205765_at | 3A5 | 4.49 | 4.34 | NS | |
32 | 208327_at | 2A13 | 4.49 | 4.61 | NS | |
33 | 211440_x_at | 3A43 | 4.46 | 4.65 | NS | |
34 | 210576_at | 4F8 | 4.35 | 4.29 | NS | |
35 | 211295_x_at | 2A6 | 4.33 | 4.49 | NS | |
36 | 220331_at | 46A1 | 4.32 | 4.44 | NS | |
37 | 210452_x_at | 4F2 | 4.24 | 4.17 | NS | |
38 | 207609_s_at | 1A2 | 4.20 | 4.10 | NS | |
39 | 206539_s_at | 4F12 | 4.18 | 4.21 | NS | |
40 | 214320_x_at | 2A6 | 4.17 | 3.88 | NS | |
41 | 204309_at | 11A1 | 4.16 | 4.39 | NS | |
42 | 207608_x_at | 1A2 | 4.14 | 4.44 | ↑ | 3 |
43 | 205502_at | 17A1 | 4.06 | 4.33 | ↑ | 2 |
44 | 1431_at | 2.E1 | 4.01 | 3.67 | NS | |
45 | 216058_s_at | 2C19 | 3.17 | 3.40 | ↑ | 3 |
46 | 207406_at | 7A1 | 2.49 | 2.79 | ↑ | 2 |
47 | 207913_at | 2F1 | 2.51 | 2.86 | ↑ | 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janikowska, G.; Pyka-Pająk, A.; Janikowski, T.; Adamska, J.; Mazurek, U.; Jędrusik, P. Potential Mechanism of Action of Cyclosporin A in Human Dermal Fibroblasts—Transcriptomic Analysis of CYPs. Molecules 2018, 23, 1642. https://doi.org/10.3390/molecules23071642
Janikowska G, Pyka-Pająk A, Janikowski T, Adamska J, Mazurek U, Jędrusik P. Potential Mechanism of Action of Cyclosporin A in Human Dermal Fibroblasts—Transcriptomic Analysis of CYPs. Molecules. 2018; 23(7):1642. https://doi.org/10.3390/molecules23071642
Chicago/Turabian StyleJanikowska, Grażyna, Alina Pyka-Pająk, Tomasz Janikowski, Jolanta Adamska, Urszula Mazurek, and Przemysław Jędrusik. 2018. "Potential Mechanism of Action of Cyclosporin A in Human Dermal Fibroblasts—Transcriptomic Analysis of CYPs" Molecules 23, no. 7: 1642. https://doi.org/10.3390/molecules23071642
APA StyleJanikowska, G., Pyka-Pająk, A., Janikowski, T., Adamska, J., Mazurek, U., & Jędrusik, P. (2018). Potential Mechanism of Action of Cyclosporin A in Human Dermal Fibroblasts—Transcriptomic Analysis of CYPs. Molecules, 23(7), 1642. https://doi.org/10.3390/molecules23071642