Correlation of FT-IR Fingerprint and α-Glucosidase Inhibitory Activity of Salak (Salacca zalacca) Fruit Extracts Utilizing Orthogonal Partial Least Square
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield
2.2. α-Glucosidase Inhibitory Activity of the Salak Fruit Extracts
2.3. Analysis of Infrared Spectra
2.4. OPLS Modeling
2.5. Validation and Cross-Validation OPLS Model
2.6. α-Glucoside Inhibiting Metabolites
3. Materials and Methods
3.1. Chemicals
3.2. Samples and Extraction
3.3. α-Glucosidase Inhibitory Activity
3.4. Fourier Transform Infrared (FT-IR) Conditions
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Janick, J.; Pull, R.E. The Encyclopedia of Fruit & Nuts; CABI: Wallingford, UK, 2008; pp. 153–157. [Google Scholar]
- Dembitsky, V.M.; Poovarodom, S.; Leontowicz, H.; Leontowicz, H.; Vearasilp, S.; Trakhtenberg, S.; Gorinstein, S. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res. Int. 2011, 44, 1671–1701. [Google Scholar] [CrossRef]
- Priyatno, L.H.A.; Sukandar, E.Y.; Ibrahim, S.; Adnyana, K. Antihyperuricemic Effect of Ethanol Extract of Snake Fruit (Salacca edulis Reinw.) var. Bongkok on Wistar Male Rat. J. Food Sci. Eng. 2012, 2, 271–276. [Google Scholar]
- Gorinstein, S.; Haruenkit, R.; Poovarodom, S.; Park, Y.S.; Vearasilp, S.; Suhaj, M.; Ham, K.S.; Heo, B.G.; Cho, J.Y.; Jang, H.G. The comparative characteristics of snake and kiwi fruits. Food Chem. Toxicol. 2009, 47, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
- Afrianti, L.H.; Widjaja, W.P.; Suliasih, N.; Widowati, W.; Fauziah, N.; Maesaroh, M.; Erawijantari, P.P. Anticancer Activity of 3-Hydroxystigmastan- 5(6)-en (β-Sitosterol) compound from Salacca edulis reinw variety Bongkok in MCF-7 and T47D cell line. J. Adv. Agric. Technol. 2015, 2, 129–133. [Google Scholar] [CrossRef]
- Gorinstein, S.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Leontowicz, J.; Vearasilp, S.; Haruenkit, R.; Ruamsuke, P.; Katrich, E.; Tashma, Z. Antioxidant properties and bioactive constituents of some rare exotic thai fruits and comparison with conventional fruits in vitro and in vivo studies. Food Res. Int. 2011, 44, 2222–2232. [Google Scholar] [CrossRef]
- Zubaidah, E.; Putri, R.; Dwi, W.; Puspitasari, T.; Kalsum, U.; Dianawati, D. The Effectiveness of Various Salacca Vinegars as Therapeutic Agent for Management of Hyperglycemia and Dyslipidemia on Diabetic Rats. Int. J. Food Sci. 2017, 2017, 8742514. [Google Scholar] [CrossRef] [PubMed]
- Zubaidah, E.; Ichromasari, D.Y.; Mandasari, O.K. Effect of Salacca vinegar var. suwaru on lipid profile diabetic rats. Food Nutr. Sci. 2014, 5, 743–748. [Google Scholar] [CrossRef]
- Rohaeti, E.; Fauzi, M.R.; Batubara, I. Inhibition of α-glucosidase, total phenolic content and flavonoid content on skin fruit and flesh extracts of some varieties of snake fruits. IOP Conf. Ser. Earth Environ. Sci. 2017, 58, 012066. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. Int. J. Biol. Macromol. 2014, 64, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Nam, K.A.; Kurihara, H.; Kim, S.M. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 2008, 69, 2820–2825. [Google Scholar] [CrossRef] [PubMed]
- Verpoorte, R.; Choi, Y.H.; Mustafa, N.R.; Kim, H.K. Metabolomics: Back to basics. Phytochem. Rev. 2008, 7, 525–537. [Google Scholar] [CrossRef]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.J.; Galceran, M.T. Modern developments in gas chromatography-mass spectrometry-based environmental analysis. J. Chromatogr. A 2003, 1000, 125–151. [Google Scholar] [CrossRef]
- Kang, J.; Choi, M.Y.; Kang, S.; Kwon, H.N.; Wen, H.; Lee, C.H.; Park, M.; Wiklund, S.; Kim, H.J.; Kwon, S.W.; et al. Application of a 1H Nuclear Magnetic Resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. J. Agric. Food Chem. 2008, 56, 11589–11595. [Google Scholar] [CrossRef] [PubMed]
- Sharif, K.M.; Rahman, M.M.; Azmir, J.; Khatib, A.; Hadijah, S.; Mohamed, A.; Sahena, F.; Zaidul, I.S.M. Orthogonal partial least squares model for rapid prediction of antioxidant activity of Pereskia bleo by Fourier Transform Infrared spectroscopy. Anal. Lett. 2014, 47, 2061–2071. [Google Scholar] [CrossRef]
- Corte, L.; Rellini, P.; Roscini, L.; Fatichenti, F.; Cardinali, G. Development of a novel, FTIR (Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress response study. Anal. Chim. Acta 2010, 659, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.; Ismail, Z.; Sadikun, A.; Ibrahim, P. Evaluation of metabolic changes in fruit of Piper Sarmentosum in various seasons by metabolomics using Fourier Transform Infrared (FTIR) spectroscopy. Int. J. Pharm. Clin. Res. 2009, 1, 68–71. [Google Scholar]
- Van der Kooy, F.; Verpoorte, R.; Marion Meyer, J.J. Metabolomic quality control of claimed anti-malarial Artemisia afra herbal remedy and A. afra and A. annua plant extracts. S. Afr. J. Bot. 2008, 74, 186–189. [Google Scholar] [CrossRef]
- Johnson, H.E.; Broadhurst, D.; Goodacre, R.; Aileen, R.S. Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 2003, 62, 919–928. [Google Scholar] [CrossRef] [Green Version]
- Connor, S.C.; Wu, W.; Sweatman, B.S.; Manini, J.; Haselden, J.N.; Crowther, D.J.; Waterfield, C.J. Effects of feeding and body weight loss on the 1H-NMR-based urine metabolic profiles of male Wistar Han rats: Implications for biomarker discovery. Biomarkers 2004, 9, 56–179. [Google Scholar] [CrossRef] [PubMed]
- Viant, M.R.; Rosenblum, E.S.; Tjeerdema, R.S. 1H-NMR-Based Metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environ. Sci. Technol. 2003, 37, 4982–4989. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, G.B.; Honda, N.K.; Ferreira, M.M.C.; Ferreira, A.G. Chemometric analysis applied in 1H HR-MAS NMR and FT-IR data for chemotaxonomic distinction of intact lichen samples. Anal. Chim. Acta 2007, 595, 3–8. [Google Scholar] [CrossRef]
- Bailey, N.J.C.; Wang, Y.; Sampson, J.; Davis, W.; Whitcombe, I.; Hylands, P.J.; Croft, S.L.; Holmes, E. Prediction of anti-plasmodial activity of Artemisia annua extracts: Application of 1H NMR spectroscopy and chemometrics. J. Pharm. Biomed. Anal. 2004, 35, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Khatib, A.; Perumal, V.; Ahmed, Q.U.; Uzir, B.F.; Abas, F.; Murugesu, S. Characterization of antioxidant activity of Momordica Charantia fruit by Infrared-based fingerprinting. Anal. Lett. 2017, 50, 1977–1991. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Joshi, D.D. Herbal Drugs and Fingerprints: Evidence Based Herbal Drugs; Springer Science & Business Media: New Delhi, India, 2012. [Google Scholar]
- Ragasa, C.Y.; Ting, J.U.; Ramones, M.V.; Tan, M.C.; Lerom, R.R.; Linis, V.C.; Shen, C.C. Chemical constituents of Salacca wallichiana mart. Int. J. Curr. Pharm. Rev. Res. 2016, 7, 186–189. [Google Scholar]
- Zaini, N.A.M.; Osman, A.; Hamid, A.A.; Ebrahimpour, A.; Saari, N. Purification and characterization of membrane-bound polyphenoloxidase (mPPO) from Snake fruit [Salacca zalacca (Gaertn.) Voss]. Food Chem. 2013, 136, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, S.P.; Law, C.L. Drying kinetics and antioxidant phytochemicals retention of salak fruit under different drying and pretreatment conditions. Dry Technol. 2011, 29, 429–441. [Google Scholar] [CrossRef]
- Pavia, D.; Lampman, G.; Kriz, G.; Vyvyan, J. Introduction to Spectroscopy, 5th ed.; Cengage Learning: Stamford, CT, USA, 2014. [Google Scholar]
- Eriksson, L. Multi- and Megavariate Data Analysis, 2nd ed.; MKS Umetrics AB: Umea, Sweden, 2006. [Google Scholar]
- Wiklund, S.; Johansson, E.; Sjostrom, L.; Mellerowicz, J.E.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2007, 80, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Javadi, N.; Abas, F.; Abd Hamid, A.; Simoh, S.; Shaari, K.; Ismail, I.S.; Mediani, A.; Khatib, A. GC-MS-based metabolite profiling of Cosmos caudatus leaves possessing alpha-glucosidase inhibitory activity. J. Food Sci. 2014, 79, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.A.; Ng, T.B.; Fong, W.P.; Wan, C.C.; Yeung, H.W. Inhibition of glycohydrolase enzymes by aqueous extracts of Chinese medicinal herbs in a microplate format. IUBMB Life 1997, 42, 1163–1169. [Google Scholar] [CrossRef]
Sample Availability: Not Available. |
Concentration of Ethanol–Water | Yield (%) | α-Glucosidase Inhibitory Activity IC50 (μg/mL) |
---|---|---|
0/100 | 69.4 ± 3.6 b,c | 271.46 ± 15.55 a |
20/80 | 67.2 ± 2.4 c | 156.12 ± 9.96 b |
40/60 | 67.7 ± 2.1 c | 175.81 ± 12.41 c |
60/40 | 72.6 ± 2.7 a,b | 15.94 ± 2.52 d,e |
80/20 | 75.5 ± 2.2 a | 26.82 ± 1.49 d |
100/0 | 20.2 ± 1.4 d | 19.15 ± 1.82 d,e |
Quercetin | ND | 4.89 ± 0.48 e |
Sample | Actual α-Glucosidase Activity IC50 (μg/mL) | Predicted α-Glucosidase Activity IC50 (μg/mL) |
---|---|---|
1 | 33.11 ± 3.21 c | Highly active |
2 | 13.7 ± 1.18 d | Highly active |
3 | 54.44 ± 4.71 b | Moderately active |
4 | 120.33 ± 15.12 a | Not active |
5 | 45.45 ± 4.46 b,c | Moderately active |
6 | 50.66 ± 5.22 b | Moderately active |
7 | 14.71 ± 0.81 d | Highly active |
8 | 27.66 ± 2.40 c,d | Highly active |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, M.S.M.; Siddiqui, M.J.; Mat So’ad, S.Z.; Roheem, F.O.; Saidi-Besbes, S.; Khatib, A. Correlation of FT-IR Fingerprint and α-Glucosidase Inhibitory Activity of Salak (Salacca zalacca) Fruit Extracts Utilizing Orthogonal Partial Least Square. Molecules 2018, 23, 1434. https://doi.org/10.3390/molecules23061434
Saleh MSM, Siddiqui MJ, Mat So’ad SZ, Roheem FO, Saidi-Besbes S, Khatib A. Correlation of FT-IR Fingerprint and α-Glucosidase Inhibitory Activity of Salak (Salacca zalacca) Fruit Extracts Utilizing Orthogonal Partial Least Square. Molecules. 2018; 23(6):1434. https://doi.org/10.3390/molecules23061434
Chicago/Turabian StyleSaleh, Mohammed S. M., Mohammad Jamshed Siddiqui, Siti Zaiton Mat So’ad, Fatimah Opeyemi Roheem, Salima Saidi-Besbes, and Alfi Khatib. 2018. "Correlation of FT-IR Fingerprint and α-Glucosidase Inhibitory Activity of Salak (Salacca zalacca) Fruit Extracts Utilizing Orthogonal Partial Least Square" Molecules 23, no. 6: 1434. https://doi.org/10.3390/molecules23061434
APA StyleSaleh, M. S. M., Siddiqui, M. J., Mat So’ad, S. Z., Roheem, F. O., Saidi-Besbes, S., & Khatib, A. (2018). Correlation of FT-IR Fingerprint and α-Glucosidase Inhibitory Activity of Salak (Salacca zalacca) Fruit Extracts Utilizing Orthogonal Partial Least Square. Molecules, 23(6), 1434. https://doi.org/10.3390/molecules23061434