Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of New Flexible MSQ Aerogels
2.2. Surface Modification of Flexible MSQ Aerogels
2.3. Sound-Absorbing Test of New Flexible MSQ Aerogels
2.4. Oil/Water Separation Properties of the New Flexible MSQ Aerogels
2.5. Fast Dye Adsorptionof New Flexible MSQ Aerogels
2.5.1. Fast Dye Adsorption Facility
2.5.2. Fast Dye Adsorption for Methyl Orange
2.5.3. Fast Dye Adsorption for Varied Dye Solutions
3. Experimental Section
3.1. Aerogel Synthesis
3.2. Surface Modification of Aerogels
3.3. Characterization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nguyen, B.N.; Meador, M.A.B.; Medoro, A.B.; Arendt, V.; Randall, J.; Mccorkle, L.; Shonkwiler, B. Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate. ACS Appl. Mater. Interfaces 2010, 2, 1430–1443. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, K.; Aizawa, M.; Nakanishi, K.; Handa, T. Elastic organic–inorganic hybrid aerogels and xerogels. J. Sol-Gel Sci. Technol. 2008, 48, 172–181. [Google Scholar] [CrossRef]
- Guo, X.Z.; Li, W.Y.; Zhu, Y.; Nakanishi, K.; Kanamori, K. Macroporous SiO2 monoliths prepared via sol-gel process accompanied by phase separation. Acta Phys.-Chim. Sin. 2013, 29, 646–652. [Google Scholar] [CrossRef]
- Guo, X.Z.; Li, W.Y.; Yang, H.; Kanamori, K.; Zhu, Y.; Nakanishi, K. Gelation behavior and phase separation of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Sol-Gel Sci. Technol. 2013, 67, 406–413. [Google Scholar] [CrossRef]
- Guo, X.Z.; Li, W.Y.; Yang, H.; Kanamori, K.; Zhu, Y.; Nakanishi, K. Pore structure control of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Porous Mater. 2013, 20, 1477–1483. [Google Scholar] [CrossRef]
- Nakanishi, K.; Tanaka, N. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 2007, 40, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K. Advances in monolithic porous materials tailored in liquid media: Around inorganic oxides and organic polymers. J. Ceram. Soc. Jpn. 2012, 120, 1–10. [Google Scholar] [CrossRef]
- Hayase, G.; Kanamori, K.; Fukuchi, M.; Kaji, H.; Nakanishi, K. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew. Chem. 2013, 52, 1986–1989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, N.; Xu, J. Sol–gel with phase separation. Fabrication and application of superhydrophilic surfaces: A review. J. Adhes. Sci. Technol. 2014, 28, 769–790. [Google Scholar] [CrossRef]
- Rao, A.V.; Bhagat, S.D.; Hirashima, H.; Pajonk, G.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 2006, 300, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Kulkami, M.M.; Amalnerkar, D.P.; Seth, T. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J. Non-Cryst. Solids 2003, 330, 187–195. [Google Scholar] [CrossRef]
- Zhong, L.; Chen, X.H.; Song, H.H.; Guo, K.; Hu, Z.Z. Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New J. Chem. 2015, 39, 7832–7838. [Google Scholar] [CrossRef]
- Yokogawa, H.; Yoyama, M. Hydrophobic silica aerogels. J. Non-Cryst. Solids 1995, 186, 23–29. [Google Scholar] [CrossRef]
- Malakooti, S.; Churu, H.G.; Lee, A.; Xu, T.G.; Luo, H.Y.; Xiang, N.; Sotiriou-Leventis, C.; Leventis, N.; Lu, H.B. Sound insulation properties in low-density, mechanically strong and ductile nanoporous polyurea aerogels. J. Non-Cryst. Solids 2002, 23, 235–245. [Google Scholar] [CrossRef]
- Feng, J.D.; Le, D.; Nguyen, S.T.; Nien, V.T.C.; Jewell, D.; Duong, H.M. Silica–cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloid Surf. A 2016, 506, 298–305. [Google Scholar] [CrossRef]
- Ramamoorthy, M.; Pisal, A.A.; Rengasamy, R.S.; Rao, V.A. In-situ synthesis of silica aerogel in polyethylene terephthalate fibre nonwovens and their composite properties on acoustic absorption behavior. J. Porous Mater. 2018, 25, 179–187. [Google Scholar] [CrossRef]
- Dourbash, A.; Buratti, C.; Belloni, E.; Motahari, S. Preparation and characterization of polyurethane/silica aerogel nanocomposite materials. J. Appl. Polym. Sci. 2017, 134, 44521. [Google Scholar] [CrossRef]
- Eskandari, N.; Motahari, S.; Atoufi, Z.; Motlagh, G.H.; Najafi, M. Thermal, mechanical, and acoustic properties of silica-aerogel/UPVC composites. J. Appl. Polym. Sci. 2017, 134, 44685. [Google Scholar] [CrossRef]
- Guild, M.D.; García-Chocano, V.M.; Sánchez-Dehesa, J.; Martin, T.P.; Calvo, D.C.; Orris, G.J. Aerogel as a soft acoustic metamaterial for airborne sound. Phys. Rev. Appl. 2016, 5, 034012. [Google Scholar] [CrossRef]
- Oh, K.W.; Kim, D.K.; Kim, S.H. Ultra-porous flexible PET/aerogel blanket for sound absorption and thermal insulation. Fiber Polym. 2009, 10, 731–737. [Google Scholar] [CrossRef]
- Yang, X.; Ma, J.J.; Ling, J.; Li, N.; Wang, D.; Yue, F.; Xu, S.M. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl. Surf. Sci. 2017, 435, 609–616. [Google Scholar] [CrossRef]
- He, J.; Zhao, H.Y.; Li, X.L.; Su, D.; Zhang, F.R.; Ji, H.M.; Liu, R. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard. Mater. 2018, 346, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zhai, S.R.; Xiao, Z.Y.; Zhang, F.; An, Q.D.; Song, X.W. Preparation of superhydrophobic materials for oil/water separation and oil absorption using PMHS–TEOS-derived xerogels and polystyrene. J. Sol-Gel Sci. Technol. 2014, 72, 385–393. [Google Scholar] [CrossRef]
- Zou, F.X.; Peng, L.; Fu, W.X.; Zhang, J.L.; Li, Z.B. Flexible superhydrophobic polysiloxane aerogels for oil–water separation via one-pot synthesis in supercritical CO2. RSC Adv. 2015, 5, 76346–76351. [Google Scholar] [CrossRef]
- Cao, C.Y.; Ge, M.Z.; Huang, J.Y.; Li, S.H.; Deng, S.; Zhang, S.N.; Chen, Z.; Zhang, K.Q.; Al-Deyab, S.S.; Lai, Y.K. Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. J. Mater. Chem. A 2016, 4, 12179–12187. [Google Scholar] [CrossRef]
- Gao, X.D.; Huang, Y.D.; Zhang, T.T.; Wu, Y.Q.; Li, X.M. Amphiphilic SiO2 hybrid aerogel: An effective absorbent for emulsified wastewater. J. Mater. Chem. A 2017, 5, 12856–12862. [Google Scholar] [CrossRef]
- Mazrouei-Sebdani, Z.; Khoddami, A.; Hadadzadeh, H.; Zarrebini, M. Synthesis and performance evaluation of the aerogel-filled PET nanofiber assemblies prepared by electro-spinning. RSC Adv. 2015, 5, 12830–12842. [Google Scholar] [CrossRef]
- Xia, K.C.; Wang, G.X.; Zhang, H.L.; Liu, L.; Yu, Y.F.; Wang, L.L.; Chen, A.B. Synthesis of bimodal mesoporous carbon nanospheres for methyl orange adsorption. J. Porous Mater. 2017, 24, 1605–1612. [Google Scholar] [CrossRef]
- Bai, Q.H.; Xiong, Q.C.; Li, C.; Shen, Y.H.; Uyama, H. Hierarchical porous cellulose/activated carbon composite monolith for efficient adsorption of dyes. Cellulose 2017, 24, 4275–4289. [Google Scholar] [CrossRef]
- Sharma, M.; Hazra, S.; Basu, S. Kinetic and isotherm studies on adsorption of toxic pollutants using porous ZnO@SiO2 monolith. J. Colloid Interface Sci. 2017, 504, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Murai, S.; Fujita, K.; Konishi, J.; Hirao, K.; Tanaka, K. Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution. Appl. Phys. Lett. 2010, 97, 031118. [Google Scholar] [CrossRef] [Green Version]
- Rixt, T.B.; Jan, B.F.N.E. Aggregation of dicationic surfactants with methyl orange in aqueous solution. Langmuir 2001, 17, 1054–1059. [Google Scholar] [CrossRef]
- Fredric, M.M.; Jason, S.K. Gemini surfactants. Angew Chem. Int. Ed. 2000, 39, 1906–1920. [Google Scholar] [CrossRef]
Sample Availability: Samples of the new flexible MSQ aerogels (a–f) are available from the authors. |
Sample | Surface Modification | C1s% | O1s% | Si2p% | Surface Composition (3~5 nm) |
---|---|---|---|---|---|
(1) | no | 54.26 | 25.51 | 20.23 | SiO1.26(CH3)2.68 |
(2) | HMDSO | 51.82 | 27.48 | 20.7 | SiO1.35(CH3)2.50 |
(3) | HMDS | 55.21 | 25.57 | 19.22 | SiO1.33(CH3)2.87 |
Sample | Surface Modification | Fmax (MPa) | dLmax (%) | Young’s Modulus (KPa) |
---|---|---|---|---|
(1) | no | 0.0325 | 60 | 0.215 |
(2) | HMDSO | 0.0253 | 70 | 0.074 |
(3) | HMDS | 0.0214 | 70 | 0.060 |
(4) | HMDSO + HMDS | 0.0234 | 70 | 0.063 |
(5) | HMDSO + IPA | 0.0248 | 60 | 0.163 |
(6) | HMDS + IPA | 0.0433 | 70 | 0.141 |
(7) | HMDSO + HMDS+ IPA | 0.0427 | 70 | 0.132 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Shan, J.; Lai, Z.; Lei, W.; Ding, R.; Zhang, Y.; Yang, H. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation. Molecules 2018, 23, 945. https://doi.org/10.3390/molecules23040945
Guo X, Shan J, Lai Z, Lei W, Ding R, Zhang Y, Yang H. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation. Molecules. 2018; 23(4):945. https://doi.org/10.3390/molecules23040945
Chicago/Turabian StyleGuo, Xingzhong, Jiaqi Shan, Zhongzhang Lai, Wei Lei, Ronghua Ding, Yun Zhang, and Hui Yang. 2018. "Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation" Molecules 23, no. 4: 945. https://doi.org/10.3390/molecules23040945