Determination of Trace Nickel in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Mixed Micelle-Mediated Cloud Point Extraction
Abstract
:1. Introduction
2. Experimental
2.1. Apparatus
2.2. Reagents and Solutions
2.3. Extraction Procedure
2.4. Optimization Procedures
2.5. Quantification Procediure
3. Result and Discussion
3.1. Effect of pH
3.2. Effect of the Amount of 5-Br-PADMA and SLS
3.3. Effect of the Amount of Triton X-114
3.4. Effects of Equilibrium Temperature and Time
3.5. Effects of Foreign Ions
3.6. Optimized Procedure
3.7. Calibration Curve, Precision, and Detection Limit
4. Application of Real Water Samples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Rezaei, B.; Rezaei, E. Simultaneous determination of trace amounts of nickel, cobalt, and zinc in the wastewater of a galvanic workshop by using adsorptive cathodic stripping voltammetry. J. Anal. Chem. 2006, 61, 262–265. [Google Scholar] [CrossRef]
- Hurtado, J.; Nagles, E.; Arancibia, V.; Rojas, R.; Valderrama, M.; Frohlich, R. Synthesis and structural characterization of new 2-bromo-1,3-bis(triazol-1-ylmethyl) benzene ligands. Study of their behavior as complexing agents for determination of nickel (II) by adsorptive stripping voltammetry. J. Coord. Chem. 2013, 66, 592–601. [Google Scholar] [CrossRef]
- Acharya, R.; Kolay, S.; Reddy, A.V.R. Determination of nickel in finished product alloys by instrumental neutron activation analysis and spectrophotometry. J. Radioanal. Nucl. Chem. 2012, 294, 309–313. [Google Scholar] [CrossRef]
- Shinde, A.D.; Acharya, R.; Reddy, A.V.R. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods. Nucl. Eng. Technol. 2017, 49, 562–568. [Google Scholar] [CrossRef]
- Sun, Z.M.; Liang, P.; Ding, Q.; Cao, J. Determination of trace nickel in water samples by cloud point extraction preconcentration coupled with graphite furnace atomic absorption spectrometry. J. Hazard. Mater. 2006, 137, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Y.; Zhou, J.F.; Wang, G.X.; Zhou, J.F.; Tao, G.H. Determination of trace lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin. Anal. Chim. Acta 2007, 548, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Akan, J.C.; Sodipo, O.A.; Liman, Y.; Chellube, Z.M. Determination of heavy metals in blood, urine and water samples by inductively coupled plasma atomic emission spectrophotometer and fluoride using ion-selective electrode. J. Anal. Bioanal. Technol. 2014, 5, 217. [Google Scholar] [CrossRef]
- Sedykh, E.M.; Bannykh, L.N.; Korobeinik, G.S.; Starshinova, N.P. Determination of nickel and vanadium in crude oils by electrothermal atomic absorption spectrometry and inductively coupled plasma atomic emission spectroscopy after mineralization in an autoclave. Inorg. Mater. 2011, 47, 1539–1543. [Google Scholar] [CrossRef]
- Meng, Z.C.; Zhang, N. Rapid analysis of trace nickel in hydrogenated cottonseed oil by microwave digestion prior to its inductively coupled plasma mass spectrometry determination. Spectrosc. Lett. 2012, 45, 296–300. [Google Scholar] [CrossRef]
- De Quadros, D.P.C.; Borges, D.L.G. Direct analysis of alcoholic beverages for the determination of cobalt, nickel and tellurium by inductively coupled plasma mass spectrometry following photochemical vapor generation. Microchem. J. 2014, 116, 244–248. [Google Scholar] [CrossRef]
- Khani, R.; Shemirani, F. Simultaneous determination of trace amounts of cobalt and nickel in water and food samples using a combination of partial least squares method and dispersive liquid–liquid microextraction based on ionic liquid. Food Anal. Methods 2013, 6, 386–394. [Google Scholar] [CrossRef]
- Hol, A.; Akdogan, A.; Kartal, A.A.; Divrikli, U.; Elci, L. Dispersive liquid-liquid microextraction of nickel prior to its determination by microsample injection system-flame atomic absorption spectrometry. Anal. Lett. 2014, 47, 2195–2208. [Google Scholar] [CrossRef]
- Mohammadi, S.Z.; Hamidian, H.; Karimzadeh, L.; Moeinadini, Z. Simultaneous extraction of trace amounts of cobalt, nickel and copper ions using magnetic iron oxide nanoparticles without chelating agent. J. Anal. Chem. 2013, 68, 953–958. [Google Scholar] [CrossRef]
- García-Otero, N.; Teijeiro-Valiño, C.; Otero-Romaní, J.; Peña-Vázquez, E.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. On-line ionic imprinted polymer selective solid-phase extraction of nickel and lead from seawater and their determination by inductively coupled plasma-optical emission spectrometry. Anal. Bioanal. Chem. 2009, 395, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Lledó, F.C.; Galindo-Riaño, M.D.; Díaz-López, I.C.; García-Vargas, M.; Granado-Castro, M.D. Applicability of a liquid membrane in enrichment and determination of nickel traces from natural waters. Anal. Bioanal. Chem. 2007, 389, 653–659. [Google Scholar] [CrossRef] [PubMed]
- De Bezerra, M.A.; Conceição, A.L.B.; Ferreira, S.L.C. Doehlert matrix for optimisation of procedure for determination of nickel in saline oil-refinery effluents by use of flame atomic absorption spectrometry after preconcentration by cloud-point extraction. Anal. Bioanal. Chem. 2004, 378, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.Z.; Afzali, D.; Pourtalebi, D. Flame atomic absorption spectrometric determination of trace amounts of palladium, gold and nickel after cloud point extraction. J. Anal. Chem. 2011, 66, 620–625. [Google Scholar] [CrossRef]
- Garcia, S.; Galbeiro, R.; Sidnei, G.S.; Cassiana, S.N.; Fábio, R.P.R.; Ivanise, G. An environmentally friendly analytical procedure for nickel determination by atomic and molecular spectrometry after cloud point extraction in different samples. Anal. Methods 2012, 4, 2429–2434. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Huo, Y.Y.; Yang, L.H.; Hao, T.T.; Yang, X.H.; Zhai, Y.H. Determination of ultra-trace cobalt in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction using 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline as the chelating agent. Anal. Methods 2015, 7, 8931–8935. [Google Scholar] [CrossRef]
- Han, Q.; Huo, Y.Y.; Yang, X.H.; He, Y.P.; Wu, J.Y.; Cai, H.L. Determination of ultra-trace levels of cobalt in water and wheat flour samples using cloud point extraction coupled with laser thermal lens spectrometry. Anal. Methods 2018, 10, 634–640. [Google Scholar] [CrossRef]
- Han, Q.; Huo, Y.Y.; Wu, J.Y.; He, Y.P.; Yang, X.H.; Yang, L.H. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent. Molecules 2017, 22, 487. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Huo, Y.Y.; Yang, N.; Yang, X.H.; Zhai, Y.H.; Zhang, Q.Y. Determination of falladium in water samples using cloud point extraction coupled with laser thermal lens spectrometry. J. Korean Chem. Soc. 2015, 59, 407–412. [Google Scholar] [CrossRef]
- Han, Q.; Cao, C.H.; Wu, Q.X. Study on the color reaction of nickel (II) with 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline and its application. Chin. J. Anal. Lab. 1994, 13, 34–35. [Google Scholar]
- Zhang, G.; Han, Q.; Hu, Y.R.; Jiao, S.Y. Synthesis of 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline and spectrophotometric study on the color reaction of it with cobalt. Phys. Test. Chem. Anal. 1990, 26, 219–221. [Google Scholar]
- Bahram, M.; Khezri, S.; Khezri, S. Cloud point extraction, preconcentration and spectrophotometric determination of nickel in water samples using dimethylglyoxime. Curr. Chem. Lett. 2013, 2, 49–56. [Google Scholar] [CrossRef]
- Fan, C.L.; Pan, Q.H.; Li, Q.; Wang, L.Y. Cloud point-TiO2/sepiolite composites extraction for simultaneous preconcentration and determination of nickel in green tea and coconut water. J. Iran. Chem. Soc. 2016, 13, 331–337. [Google Scholar] [CrossRef]
- Safavi, A.; Abdollahi, H.; Nezhad, M.R.H.; Kamali, R. Cloud point extraction, preconcentration and simultaneous spectrophotometric determination of nickel and cobalt in water samples. Spectrochim. Acta A 2004, 60, 2897–2901. [Google Scholar] [CrossRef] [PubMed]
- Kazi, T.G.; Shah, F.; Afridi, H.I.; Baig, J.A.; Soomro, A.S. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples. J. AOAC Int. 2013, 96, 447–452. [Google Scholar]
- Arain, S.S.; Kazi, T.G.; Arain, J.B.; Afridi, H.I.; Kazi, A.G.; Nasreen, S.; Brahman, K.D. Determination of nickel in blood and serum samples of oropharyngeal cancer patients consumed smokeless tobacco products by cloud point extraction coupled with flame atomic absorption spectrometry. Environ. Sci. Pollut. Res. 2014, 21, 12017–12027. [Google Scholar] [CrossRef] [PubMed]
- Manzoori, J.L.; Bavili-Tabrizi, A. Cloud point preconcentration and flame atomic absorption spectrometric determination of cobalt and nickel in water samples. Microchim. Acta 2003, 141, 201–207. [Google Scholar] [CrossRef]
- Satti, A.A.; Temuge, D.I.; Bektas, S.; Sahin, A.C. An application of coacervate-based extraction for the separation and preconcentration of cadmium, lead, and nickel ions prior to their determination by flame atomic absorption spectrometry in various water samples. Turk. J. Chem. 2016, 40, 979–987. [Google Scholar] [CrossRef]
- Ghaedi, M.; Shokrollahi, A.; Ahmadi, F.; Rajabi, H.R.; Soylak, M. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. J. Hazard. Mater. 2008, 150, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.L.F.; Matosa, W.O.; Lopes, G.S. Determination of cadmium, cobalt, copper, lead, nickel and zinc contents in saline produced water from the petroleum industry by ICP OES after cloud point extraction. Anal. Methods 2015, 7, 9844–9849. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Parameters | Value |
---|---|
Wavelength | 232.0 nm |
Slit | 0.2 nm |
Lamp current | 4.0 mA |
Filter coefficient | 0.10 |
Pressure (Ar) | 0.60 mPa |
Injected volume | 10.0 μL |
Drying temperature | 100 °C (Ramp 10 s, hold 15 s) |
Ashing temperature | 800 °C (Ramp 15 s, hold 15 s) |
Atomization temperature | 2000 °C (Ramp 0 s, hold 3 s) |
Cleaning temperature | 2100 °C (Ramp 1 s, hold 2 s) |
Species | Foreign/Ni (w/w) | Species | Foreign/Ni (w/w) |
---|---|---|---|
Li+, K+, Mg2+, Ca2+, Sr2+, Zn2+, F−, Cl−, Br−, SO42− | 2500 | Cu2+, Cr3+, Ir(IV), Mn2+ | 400 |
Ba2+, Pb2+, La3+ | 2000 | Bi3+, Pd2+, Ce(IV) | 200 |
Fe3+, Al3+ | 1000 | Ag+, Pt(IV), Hg2+ | 100 |
Cd2+, As(V), Mo(IV), W(VI), Rh3+ | 500 | Co2+ | 50 |
Reagent * | Extractant | Detection System | PF/EF ** | RSD% | LOD (ng∙mL−1) | Application | Ref. |
---|---|---|---|---|---|---|---|
DMG | Triton X-114 | UV-vis | 20/ | 1.04 | 4 | Tap and river water | [26] |
PAN | Triton X-114 | UV-vis | 5/ | 1.3 | 5 | Green tea, coconut water | [27] |
ACDA | Triton X-114 | UV-vis | 10/ | - | 10 | Natural and waste water | [28] |
8-HQ | Triton X-114 | FAAS | 50/61 | 2.18 | 0.52 | Drinking and waste water | [29] |
Br-PADAP | Triton X-114 | FAAS | /74 | 4.7 | 0.2 | Saline effluents | [17] |
PAN | Triton X-114 | FAAS | 8/ | 1.8 | 2.4 | River water | [18] |
APDC | Triton X-114 | FAAS | /46 | - | 0.52 | Whole blood, serum | [30] |
1-Nitroso-2-naphthol | PONPE 7.5 | FAAS | 40/29 | 2.89 | 1.09 | Tap, river, sea, and treated waste water | [31] |
Quinalizarin | Triton X-114 | FAAS | /92 | 4.6 | 2.8 | Tap and sea water | [32] |
MPKO | Triton X-114 | FAAS | 30/58 | - | 2.1 | Natural and wastewater, soil, blood | [33] |
8-HQ | Triton X-114 | ICP/OES | 10/9.5 | 0.22–2.93 | 0.23 | Produced water | [34] |
PMBP | Triton X-100 | GFAAS | /27 | 4.3 | 0.12 | Water | [6] |
DPKSH | Triton X-114 | GFAAS | /27 | - | 0.14 | Natural waters, urine, and honey | [19] |
5-Br-PADMA | Triton X-114 | GFAAS | 200/ | 2.1 | 0.031 | Well and river water | This work |
Sample | Added (ng/mL) | Found * (ng/mL) | Recovery (%) |
---|---|---|---|
Well water | - | 0.56 ± 0.01 | - |
1.5 | 2.10 ± 0.06 | 103 | |
3.5 | 3.99 ± 0.01 | 98.0 | |
River water 1 | - | ND | - |
1.0 | 1.03 ± 0.04 | 103 | |
4.0 | 3.94 ± 0.011 | 98.4 | |
River water 2 | - | ND | - |
1.0 | 0.973 ± 0.026 | 97.3 | |
3.0 | 3.06 ± 0.07 | 102 | |
River water 3 | - | ND | - |
2.0 | 2.02 ± 0.07 | 101 | |
4.0 | 3.96 ± 0.09 | 99.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Q.; Huo, Y.; Yang, L.; Yang, X.; He, Y.; Wu, J. Determination of Trace Nickel in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Mixed Micelle-Mediated Cloud Point Extraction. Molecules 2018, 23, 2597. https://doi.org/10.3390/molecules23102597
Han Q, Huo Y, Yang L, Yang X, He Y, Wu J. Determination of Trace Nickel in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Mixed Micelle-Mediated Cloud Point Extraction. Molecules. 2018; 23(10):2597. https://doi.org/10.3390/molecules23102597
Chicago/Turabian StyleHan, Quan, Yanyan Huo, Longhu Yang, Xiaohui Yang, Yaping He, and Jiangyan Wu. 2018. "Determination of Trace Nickel in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Mixed Micelle-Mediated Cloud Point Extraction" Molecules 23, no. 10: 2597. https://doi.org/10.3390/molecules23102597
APA StyleHan, Q., Huo, Y., Yang, L., Yang, X., He, Y., & Wu, J. (2018). Determination of Trace Nickel in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Mixed Micelle-Mediated Cloud Point Extraction. Molecules, 23(10), 2597. https://doi.org/10.3390/molecules23102597