The Antioxidant and Safety Properties of Spent Coffee Ground Extracts Impacted by the Combined Hot Pressurized Liquid Extraction–Resin Purification Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Analytic Reagents
2.2. Spent Coffee Grounds (SCG)
2.3. Hot Pressurized Liquid Extraction
2.4. Macroporous Resin Purification of SCG Extracts
2.5. Determination of the Total Polyphenol Content (TPC)
2.6. Determination of Antioxidant Capacity
2.7. Quantification of HMF
2.8. Determination of the Polyphenol Profile
2.9. Experimental Design and Statistical Analyses
2.10. Computational Chemistry
3. Results and Discussion
3.1. Impact of the Operating Conditions of a HPLE-RP Combined Process on the Chemical Composition and Antioxidant Properties of SCG Extracts
3.2. Chemical Composition Changes Experimented by the SCG Extracts during the Best HPLE-RP Operating Conditions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United States Department of Agriculture USA. Coffee: World Markets and Trade; USDA: Ithaca, NY, USA, 2014.
- Taguchi, C.; Fukushima, Y.; Kishimoto, Y.; Suzuki-Sugihara, N.; Saita, E.; Takahashi, Y.; Kondo, K. Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese. Nutrients 2015, 7, 10269–10281. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of Antioxidant Phenolic Compounds from Spent Coffee Grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Peshev, D.; Mitev, D.; Peeva, L.; Peev, G. Valorization of Spent Coffee Grounds—A New Approach. Sep. Purif. Technol. 2018, 192, 271–277. [Google Scholar] [CrossRef]
- Palomino García, L.R.; Biasetto, C.R.; Araujo, A.R.; Del Bianchi, V.L. Enhanced Extraction of Phenolic Compounds from Coffee Industry’s Residues through Solid State Fermentation by Penicillium Purpurogenum. Food Sci. Technol. 2015, 35, 704–711. [Google Scholar] [CrossRef]
- Bravo, J.; Juániz, I.; Monente, C.; Caemmerer, B.; Kroh, L.W.; De Peña, M.P.; Cid, C. Evaluation of Spent Coffee Obtained from the Most Common Coffeemakers as a Source of Hydrophilic Bioactive Compounds. J. Agric. Food Chem. 2012, 60, 12565–12573. [Google Scholar] [CrossRef] [PubMed]
- Nuhu, A.A.; Nuhu, A.A. Bioactive Micronutrients in Coffee: Recent Analytical Approaches for Characterization and Quantification. ISRN Nutr. 2014, 2014, 384230. [Google Scholar] [CrossRef] [PubMed]
- Huaman-Castilla, N.L.; Mariotti-Celis, M.S.; Perez-Correa, J.R. Polyphenols of Carménère Grapes. Mini Rev. Org. Chem. 2017, 14, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Marioti-Celis, M.S.; Martinez-Cifuentes, M.; Huamán-Castilla, N.; Pedreshi, F.; Pérez-Correa, J.R. Obtaining Safe Polyphenols Extracts from Carménère Pomace: Impact of the Operating Conditions of an Integrated Process of Hot Pressurized Liquid Extraction-Macroporous Resin Purification. Food Sci. Technol. Int. 2017. [Google Scholar] [CrossRef]
- Ong, E.S.; Cheong, J.S.H.; Goh, D. Pressurized Hot Water Extraction of Bioactive or Marker Compounds in Botanicals and Medicinal Plant Materials. J. Chromatogr. A 2006, 1112, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.F.; Xu, J.L.; Lee, W.J.; Um, B.H. Antioxidative Polyphenolics Obtained from Spent Coffee Grounds by Pressurized Liquid Extraction. S. Afr. J. Bot. 2017, 109, 75–80. [Google Scholar] [CrossRef]
- Troise, A.D.; Fogliano, V. Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry; Elsevier Inc.: San Diego, CA, USA, 2015. [Google Scholar]
- Oral, R.A.; Mortas, M.; Dogan, M.; Sarioglu, K.; Yazici, F. New Approaches to Determination of HMF. Food Chem. 2014, 143, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Akillioglu, H.G.; Gökmen, V. Mitigation of Acrylamide and Hydroxymethyl Furfural in Instant Coffee by Yeast Fermentation. Food Res. Int. 2014, 61, 252–256. [Google Scholar] [CrossRef]
- Rannou, C.; Laroque, D.; Renault, E.; Prost, C.; Sérot, T. Mitigation Strategies of Acrylamide, Furans, Heterocyclic Amines and Browning during the Maillard Reaction in Foods. Food Res. Int. 2016, 90, 154–176. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Van Der Fels-Klerx, H.J.; Peters, R.J.B.; Van Boekel, M.A.J.S. Acrylamide and 5-Hydroxymethylfurfural Formation during Baking of Biscuits: Part I: Effects of Sugar Type. Food Chem. 2016, 192, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Van Der Fels-Klerx, H.J.; Capuano, E.; Nguyen, H.T.; Ataç Mogol, B.; Kocadaǧli, T.; Göncüoǧlu Taş, N.; Hamzalioǧlu, A.; Van Boekel, M.A.J.S.; Gökmen, V. Acrylamide and 5-Hydroxymethylfurfural Formation during Baking of Biscuits: NaCl and Temperature-Time Profile Effects and Kinetics. Food Res. Int. 2014, 57, 210–217. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-Hydroxymethylfurfural (HMF): A Review on Metabolism, Toxicity, Occurrence in Food and Mitigation Strategies. LWT-Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Murkovic, M.; Bornik, M.A. Formation of 5-Hydroxymethyl-2-Furfural (HMF) and 5-Hydroxymethyl-2-Furoic Acid during Roasting of Coffee. Mol. Nutr. Food Res. 2007, 51, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Tfouni, S.A.V.; Serrate, C.S.; Leme, F.M.; Camargo, M.C.R.; Teles, C.R.A.; Cipolli, K.M.V.A.B.; Furlani, R.P.Z. Polycyclic Aromatic Hydrocarbons in Coffee Brew: Influence of Roasting and Brewing Procedures in Two Coffea Cultivars. LWT-Food Sci. Technol. 2013, 50, 526–530. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Yongliang, Z.; Qingyu, M.; Yan, G.; Liping, S. Purification and Identification of Rambutan (Nephelium lappaceum) Peel Phenolics with Evaluation of Antioxidant and Antiglycation Activities in Vitro. Int. J. Food Sci. Technol. 2017, 52, 1810–1819. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, M.; Lin, L. Adsorption and Desorption Characteristics of Adlay Bran Free Phenolics on Macroporous Resins. Food Chem. 2016, 194, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Huxham, I.M.; Tetley, L.; Rowatt, B.; Sherrington, D.C. Comparison of Porositycharacteristics of Macroporous Poly(styrene-Divinylbenzene) Resins Determined from Mercury Intrusion Data and Image-Analysis of Transmission Electron-Micrographs. J. Mater. Chem. 1994, 4, 253–255. [Google Scholar] [CrossRef]
- Karacabey, E.; Mazza, G.; Bayindirli, L.; Artik, N. Extraction of Bioactive Compounds from Milled Grape Canes (Vitis Vinifera) Using a Pressurized Low-Polarity Water Extractor. Food Bioprocess Technol. 2012, 5, 359–371. [Google Scholar] [CrossRef]
- Soto, M.L.; Moure, A.; Domínguez, H.; Parajó, J.C. Recovery, Concentration and Purification of Phenolic Compounds by Adsorption: A Review. J. Food Eng. 2011, 105, 1–27. [Google Scholar] [CrossRef]
- Mendoza-Wilson, A.M.; Armenta-Vázquez, M.E.; Castro-Arredondo, S.I.; Espinosa-Plascencia, A.; Robles-Burgueño, M.D.R.; González-Ríos, H.; González-León, A.; Balandrán-Quintana, R.R. Potential of Polyphenols from an Aqueous Extract of Apple Peel as Inhibitors of Free Radicals: An Experimental and Computational Study. J. Mol. Struct. 2013, 1035, 61–68. [Google Scholar] [CrossRef]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix Dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, R.; Hamed, A.I.; Essalah, K.; Al-Ayed, A.S.; Boughdiri, S.; Tangour, B.; Kowalczyk, M.; Moldoch, J.; Mahalel, U.A.; Olezek, W.; et al. Fast Characterization of C-Glycoside Acetophenones in Medemia Argun Male Racemes (an Ancient Egyptian Palm) Using LC-MS Analyses and Computational Study with Their Antioxidant Effect. J. Mol. Struct. 2017, 1145, 230–239. [Google Scholar] [CrossRef]
- Charisiadis, P.; Kontogianni, V.G.; Tsiafoulis, C.G.; Tzakos, A.G.; Siskos, M.; Gerothanassis, I.P. 1H-NMR as a Structural and Analytical Tool of Intra- and Intermolecular Hydrogen Bonds of Phenol-Containing Natural Products and Model Compounds. Molecules 2014, 19, 13643–13682. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Salinas, J.R.; Bulnes, P.; Zúñiga, M.C.; Pérez-Jiménez, J.; Torres, J.L.; Mateos-Martín, M.L.; Agosin, E.; Pérez-Correa, J.R. Effect of Pressurized Hot Water Extraction on Antioxidants from Grape Pomace before and after Enological Fermentation. J. Agric. Food Chem. 2013, 61, 6929–6936. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar]
- Toker, O.S.; Dogan, M.; Ersoz, N.B.; Yilmaz, M.T. Optimization of the Content of 5-Hydroxymethylfurfural (HMF) Formed in Some Molasses Types: HPLC-DAD Analysis to Determine Effect of Different Storage Time and Temperature Levels. Ind. Crops Prod. 2013, 50, 137–144. [Google Scholar] [CrossRef]
- Del Álamo, M.; Casado, L.; Hernández, V.; Jiménez, J.J. Determination of Free Molecular Phenolics and Catechins in Wine by Solid Phase Extraction on Polymeric Cartridges and Liquid Chromatography with Diode Array Detection. J. Chromatogr. A 2004, 1049, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlege, E.; Robb, M.A.; Cheeseman, G.; Scalmani, V.; Barone, B.; Mennucci, G.; Petersson, A. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Wijngaard, H.; Brunton, N. The Optimization of Extraction of Antioxidants from Apple Pomace by Pressurized Liquids. J. Agric. Food Chem. 2009, 57, 10625–10631. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Ramalakshmi, K.; Rao, L.J.M.; Takano-Ishikawa, Y.; Goto, M. Bioactivities of Low-Grade Green Coffee and Spent Coffee in Different in Vitro Model Systems. Food Chem. 2009, 115, 79–85. [Google Scholar] [CrossRef]
- Belviso, S.; Ghirardello, D.; Rantsiou, K.; Giordano, M.; Bertolino, M.; Borgogna, D.; Cavallero, M.C.; Dal Bello, B.; Cena, C.; Rolle, L.; et al. Phytochemical and Microbiological Stability of Spent Espresso Coffee Grounds in Capsules. Food Res. Int. 2014, 61, 93–99. [Google Scholar] [CrossRef]
- Plaza, M.; Abrahamsson, V.; Turner, C. Extraction and Neoformation of Antioxidant Compounds by Pressurized Hot Water Extraction from Apple Byproducts. J. Agric. Food Chem 2013, 61, 5500–5510. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C.A.; Sanders, J.K.M. The Nature of π-π Interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Wheeler, S.E. Local Nature of Substituent Effects in Stacking Interactions. J. Am. Chem. Soc. 2011, 133, 10262–10274. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Wang, X.; Fu, J.; Hu, X.; Xiao, X.; Huang, L.; Zhou, Y.; Zhong, H. Desalting of Phosphopeptides by Tandem Polypyrrole-c18 Reverse Phase Micropipette Tip (TMTip PPY-C18) Based on Hybrid Electrostatic, Π-Π Stacking and Hydrophobic Interactions for Mass Spectrometric Analysis. Anal. Chim. Acta 2012, 724, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.F.; Chen, K.T.; Liu, Y.W.; Hsieh, S.H.; Huang, H.Y. Determination of Melamine and Related Triazine by-Products Ammeline, Ammelide, and Cyanuric Acid by Micellar Electrokinetic Chromatography. Anal. Chim. Acta 2010, 673, 206–211. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Temperature (°C)-Ethanol (%) | TPC (mg GAE/g) | HMF (mg/g) | Eluent% | TPC (mg GAE/g) | HMF (µg/g) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | CV | Mean | CV | Mean | CV | Mean | CV | ||
60–0 | 8.21 a | 0.01 | 0.12 a | 0.09 | 60 | 6.78 a | 0.01 | 6.23 l | 0.01 |
70 | 6.98 b | 0.02 | 5.46 h,i | 0.01 | |||||
80 | 7.20 e,f | 0.03 | 5.17 h | 0.02 | |||||
60–5.3 | 9.51 b | 0.02 | 0.10 b | 0.07 | 60 | 6.81 a | 0.03 | 5.91 k | 0.01 |
70 | 7.07 o | 0.02 | 5.25 h | 0.02 | |||||
80 | 7.19 d,e,f | 0.01 | 4.81 g | 0.01 | |||||
60–10.6 | 10.44 c | 0.00 | 0.08 c | 0.09 | 60 | 7.14 c,d,e | 0.04 | 5.51 i | 0.00 |
70 | 7.22 f,g | 0.01 | 3.97 f | 0.01 | |||||
80 | 7.34 i,j | 0.01 | 3.21 d | 0.02 | |||||
60–16 | 11.43 d | 0.01 | 0.05 d | 0.06 | 60 | 7.29 g,h,i | 0.01 | 3.12 d | 0.02 |
70 | 7.45 k,l,m | 0.02 | 2.11 b | 0.01 | |||||
80 | 7.52 n,o | 0.02 | 1.57 a | 0.03 | |||||
75–0 | 10.18 c | 0.02 | 0.13 a | 0.09 | 60 | 7.11 c,d | 0.01 | 6.88 n | 0.00 |
70 | 7.25 f,g,h | 0.02 | 6.81 n | 0.00 | |||||
80 | 7.33 h,i,j | 0.01 | 5.92 k | 0.00 | |||||
75–5.3 | 10.81 c | 0.01 | 0.12 a | 0.07 | 60 | 7.45 k,l,m | 0.01 | 6.53 m | 0.00 |
70 | 7.51 m,n,o | 0.02 | 6.35 l,m | 0.00 | |||||
80 | 7.57 o,p | 0.01 | 5.53 i,j | 0.00 | |||||
75–10.6 | 11.55 d | 0.01 | 0.09 b,c | 0.02 | 60 | 7.47 l,m,n | 0.02 | 5.69 j | 0.01 |
70 | 7.54 n,o,p | 0.01 | 4.40 f | 0.02 | |||||
80 | 7.60 p,q | 0.01 | 3.92 e,f | 0.01 | |||||
75–16 | 12.42 e | 0.01 | 0.07 d | 0.03 | 60 | 7.55 o,p | 0.01 | 3.28 e | 0.02 |
70 | 7.61 p,q | 0.01 | 2.26 c | 0.02 | |||||
80 | 7.67 q,r | 0.01 | 1.70 a | 0.01 | |||||
90–0 | 11.07 c | 0.00 | 0.15 e | 0.09 | 60 | 7.24 f,g | 0.02 | 8.04 q | 0.00 |
70 | 7.39 j,k | 0.02 | 7.33 o,p | 0.00 | |||||
80 | 7.42 k,l | 0.01 | 6.89 n | 0.00 | |||||
90–5.3 | 11.66 d | 0.02 | 0.13 a | 0.05 | 60 | 7.73 r | 0.01 | 7.46 o,p | 0.00 |
70 | 8.10 t,u | 0.02 | 6.90 n | 0.00 | |||||
80 | 8.24 v | 0.01 | 6.13 l | 0.00 | |||||
90–10.6 | 12.35 e | 0.01 | 0.12 a,b | 0.08 | 60 | 7.91 s | 0.02 | 7.16 o | 0.01 |
70 | 8.11 t,u | 0.01 | 6.54 m | 0.02 | |||||
80 | 8.41 w | 0.02 | 5.92 k | 0.01 | |||||
90–16 | 13.87 f | 0.01 | 0.09 b,c | 0.01 | 60 | 8.05 t | 0.02 | 3.43 e | 0.01 |
70 | 8.16 u,v | 0.02 | 2.39 c | 0.01 | |||||
80 | 8.46 w | 0.03 | 1.82 b | 0.01 |
Molecule | Mw (g/mol) | Largest Diameter (Å) | Volume (Å3) | Aromatic Rings | HPLE µg/g | HPLE–RP µg/g |
---|---|---|---|---|---|---|
5-Feruloylquinic Acid | 368.34 | 14.16 | 474.26 | 1 | 2.65 | 2.65 |
(±) Epicatechin | 290.27 | 10.36 | 381.92 | 2 | 429.38 | 422.14 |
4-Feruloylquinic Acid | 368.34 | 13.58 | 447.54 | 1 | 7.57 | 6.83 |
3,4-DiCaffeoylquinic Acid | 516.45 | 15.24 | 508.33 | 2 | 4.58 | 1.68 |
3-Feruloylquinic Acid | 368.34 | 12.85 | 444.35 | 1 | 25.39 | 1.13 |
3-Caffeoylquinic Acid | 354.31 | 12.84 | 410.75 | 1 | 16 | 0.72 |
3-Feruloyl-4-Caffeoylquinic Acid | 530.48 | 15.24 | 548.21 | 2 | 1.7 | 0.64 |
5-Caffeoylquinic Acid | 354.31 | 14.09 | 374.67 | 1 | 29.99 | 0.44 |
5-p-Coumaroylquinic Acid | 338.31 | 14.22 | 383.34 | 1 | 3.91 | ND |
Gallic acid | 170.12 | 6.87 | 199.50 | 1 | 1.11 | ND |
3,5-DiCaffeoylquinic Acid | 516.45 | 19.42 | 627.97 | 2 | 2.19 | ND |
4,5-DiCaffeoylquinic Acid | 516.45 | 14.88 | 563.67 | 2 | 0.71 | ND |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Huamán-Castilla, N.; Vargas-González, M.; Pedreschi, F.; Pérez-Correa, J.R. The Antioxidant and Safety Properties of Spent Coffee Ground Extracts Impacted by the Combined Hot Pressurized Liquid Extraction–Resin Purification Process. Molecules 2018, 23, 21. https://doi.org/10.3390/molecules23010021
Mariotti-Celis MS, Martínez-Cifuentes M, Huamán-Castilla N, Vargas-González M, Pedreschi F, Pérez-Correa JR. The Antioxidant and Safety Properties of Spent Coffee Ground Extracts Impacted by the Combined Hot Pressurized Liquid Extraction–Resin Purification Process. Molecules. 2018; 23(1):21. https://doi.org/10.3390/molecules23010021
Chicago/Turabian StyleMariotti-Celis, María Salomé, Maximiliano Martínez-Cifuentes, Nils Huamán-Castilla, Mario Vargas-González, Franco Pedreschi, and José Ricardo Pérez-Correa. 2018. "The Antioxidant and Safety Properties of Spent Coffee Ground Extracts Impacted by the Combined Hot Pressurized Liquid Extraction–Resin Purification Process" Molecules 23, no. 1: 21. https://doi.org/10.3390/molecules23010021
APA StyleMariotti-Celis, M. S., Martínez-Cifuentes, M., Huamán-Castilla, N., Vargas-González, M., Pedreschi, F., & Pérez-Correa, J. R. (2018). The Antioxidant and Safety Properties of Spent Coffee Ground Extracts Impacted by the Combined Hot Pressurized Liquid Extraction–Resin Purification Process. Molecules, 23(1), 21. https://doi.org/10.3390/molecules23010021