Antifungal and Anti-Biofilm Activities of Acetone Lichen Extracts against Candida albicans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Extracts
2.2. Antifungal Activity
2.3. Activity against Biofilm Maturation
2.4. Anti-Biofilm Activity
2.5. Comparison of Chemical Profiles of Active and Inactive Extracts
3. Experimental
3.1. Phytochemical Analysis
3.1.1. Lichen Material
3.1.2. Extraction of Lichen and Analytical Studies
3.2. Biological Activities
3.2.1. Minimal Inhibitory Concentration of Lichen Extracts
3.2.2. Anti-Biofilm Tests
3.2.3. CFU Counts and Trypan Blue Staining Assays
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Spribille, T.; Tuovinen, V.; Resl, P.; Vanderpool, D.; Wolinski, H.; Aime, M.C.; Schneider, K.; Stabentheiner, E.; Toome-Heller, M.; Thor, G.; et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 2016, 353, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Hays, S.G.; Patrick, W.G.; Ziesack, M.; Oxman, N.; Silver, P.A. Better together: Engineering and application of microbial symbioses. Curr. Opin. Biotechnol. 2015, 36, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Zeng, Y.; Edlund, A.; Melnik, A.V.; Sanchez, L.M.; Mohimani, H.; Gurevich, A.; Miao, V.; Schiffler, S.; Lim, Y.W.; et al. Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen. mSystems 2016, 1, e00139-16. [Google Scholar] [CrossRef] [PubMed]
- Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol. 2012, 50, 778–798. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X. Lichen-like symbiosis 600 million years ago. Science 2005, 308, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Underhill, D.M.; Iliev, I.D. The mycobiota: Interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 2014, 14, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Nobile, C.J.; Johnson, A.D. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G. Invasive Candidiasis. Infect. Dis. Clin. N. Am. 2006, 20, 485–506. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Ebbers, J.; Geurtz, L.; Stefanik, D.; Major, Y.; Edmond, M.B.; Wenzel, R.P.; Seifert, H. Nosocomial bloodstream infections due to Candida spp. in the USA: Species distribution, clinical features and antifungal susceptibilities. Int. J. Antimicrob. Agents 2014, 43, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Campion, E.W.; Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Schelenz, S.; Abdallah, S.; Gray, G.; Stubbings, H.; Gow, I.; Baker, P.; Hunter, P.R. Epidemiology of oral yeast colonization and infection in patients with hematological malignancies, head neck and solid tumors: Oral candidiasis in cancer patients. J. Oral Pathol. Med. 2011, 40, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Lortholary, O.; Petrikkos, G.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Calandra, T.; Castagnola, E.; Cornely, O.A.; et al. ESCMID* *This guideline was presented in part at ECCMID 2011. European Society for Clinical Microbiology and Infectious Diseases. Guideline for the diagnosis and management of Candida diseases 2012: Patients with HIV infection or AIDS. Clin. Microbiol. Infect. 2012, 18, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Candida and Candidosis, 2nd ed.; Tindall: London, UK, 1988. [Google Scholar]
- Radford, D.R.; Challacombe, S.; Walter, J.D. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit. Rev. Oral Biol. Med. 1999, 10, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Bürgers, R.; Hahnel, S.; Reichert, T.E.; Rosentritt, M.; Behr, M.; Gerlach, T.; Handel, G.; Gosau, M. Adhesion of Candida albicans to various dental implant surfaces and the influence of salivary pellicle proteins. Acta Biomater. 2010, 6, 2307–2313. [Google Scholar] [CrossRef] [PubMed]
- Soustre, J. Caspofungin modulates in vitro adherence of Candida albicans to plastic coated with extracellular matrix proteins. J. Antimicrob. Chemother. 2004, 53, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; Kuhn, D.M.; Mukherjee, P.K.; Hoyer, L.L.; McCormick, T.; Ghannoum, M.A. Biofilm Formation by the Fungal Pathogen Candida albicans: Development, Architecture, and Drug Resistance. J. Bacteriol. 2001, 183, 5385–5394. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.; Sherry, L.; Rajendran, R.; Edwards, C.A.; Combet, E.; Ramage, G. Utilising polyphenols for the clinical management of Candida albicans biofilms. Int. J. Antimicrob. Agents 2014, 44, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Tsang, P.W.-K.; Bandara, H.M.H.N.; Fong, W.-P. Purpurin Suppresses Candida albicans Biofilm Formation and Hyphal Development. PLoS ONE 2012, 7, e50866. [Google Scholar] [CrossRef] [PubMed]
- Mitrović, T.; Stamenković, S.; Cvetković, V.; Tošić, S.; Stanković, M.; Radojević, I.; Stefanović, O.; Čomić, L.; Đačić, D.; Ćurčić, M.; et al. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species. Int. J. Mol. Sci. 2011, 12, 5428–5448. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Li, Y.; Zhang, L.; Cheng, A.; Liu, Y.; Lou, H. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans. Biol. Pharm. Bull. 2012, 35, 1794–1801. [Google Scholar] [CrossRef] [PubMed]
- Elix, J.A. A Catalogue of Standardized Chromatographic Data and Biosynthetic Relationships for Lichen Substances, 3rd ed.; Published by the Author; Australian National University: Canberra, Australia, 2014. [Google Scholar]
- Orange, A.; James, P.W.; White, F.J. Microchemical Methods for the Identification of Lichens; British Lichen Society: London, UK, 2001. [Google Scholar]
- Identification des Espèces de Lichen du Monde. Available online: http://liaslight.lias.net/Identification/Navikey/World/fr_FR/index.html (accessed on 13 March 2017).
- Studzińska-Sroka, E.; Hołderna-Kędzia, E.; Galanty, A.; Bylka, W.; Kacprzak, K.; Ćwiklińska, K. In vitro antimicrobial activity of extracts and compounds isolated from Cladonia uncialis. Nat. Prod. Res. 2015, 29, 2302–2307. [Google Scholar] [CrossRef] [PubMed]
- Ranković, B.; Misić, M.; Sukdolak, S. Antimicrobial activity of extracts of the lichens Cladonia furcata, Parmelia caperata, Parmelia pertusa, Hypogymnia physodes and Umbilicaria polyphylla. Br. J. Biomed. Sci. 2007, 64, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Dieu, A. Recherche de Molécules Antimicrobiennes D’origine Lichénique. Etude de Trois Lichens et Approche Synthétique de Deux Composés Actifs. Ph.D. Thesis, University of Limoges, Limoges, France, 1 June 2015. [Google Scholar]
- Culberson, C.F. The lichen substances of the genus Evernia. Phytochemistry 1963, 2, 335–340. [Google Scholar] [CrossRef]
- Ristic, S.; Rankovic, B.; Kosanić, M.; Stamenkovic, S.; Stanojković, T.; Sovrlić, M.; Manojlović, N. Biopharmaceutical Potential of Two Ramalina Lichens and their Metabolites. Curr. Pharm. Biotechnol. 2016, 17, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Kosanić, M.; Manojlović, N.; Janković, S.; Stanojković, T.; Ranković, B. Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem. Toxicol. 2013, 53, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakova, A.; Nyugen, L.; Koptina, A.; Backlund, A.; Shurgin, A.; Romanov, E.; Ulrich-Merzenich, G. Screening of compounds of Evernia prunastri (L.) for their antiproliferative activity in glioblastoma cells. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Gökalsın, B.; Sesal, N.C. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2016, 32, 150. [Google Scholar] [CrossRef] [PubMed]
- Amo de Paz, G.; Raggio, J.; Gómez-Serranillos, M.P.; Palomino, O.M.; González-Burgos, E.; Carretero, M.E.; Crespo, A. HPLC isolation of antioxidant constituents from Xanthoparmelia spp. J. Pharm. Biomed. Anal. 2010, 53, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Oran, S.; Sahin, S.; Sahinturk, P.; Ozturk, S.; Demir, C. Antioxidant and Antimicrobial Potential, and HPLC Analysis of Stictic and Usnic Acids of Three Usnea Species from Uludag Mountain (Bursa, Turkey). Iran. J. Pharm. Res. 2016, 15, 527. [Google Scholar] [PubMed]
- Correché, E.R.; Enriz, R.D.; Piovano, M.; Garbarino, J.; Gómez-Lechón, M.J. Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Altern. Lab. Anim. ATLA 2004, 32, 605–615. [Google Scholar] [PubMed]
- Pompilio, A.; Riviello, A.; Crocetta, V.; Di Giuseppe, F.; Pomponio, S.; Sulpizio, M.; Di Ilio, C.; Angelucci, S.; Barone, L.; Di Giulio, A.; et al. Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus. Future Microbiol. 2016, 11, 1315–1338. [Google Scholar] [CrossRef] [PubMed]
- Kvasnickova, E.; Matatkova, O.; Cejkova, A.; Masak, J. Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J. Microbiol. Methods 2015, 118, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Nithyanand, P.; Beema Shafreen, R.M.; Muthamil, S.; Karutha Pandian, S. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol. Res. 2015, 179, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, A.; Bakry, A.; D’Ilario, L.; Francolini, I.; Piozzi, A.; Taresco, V. Release behavior and antibiofilm activity of usnic acid-loaded carboxylated poly(l-lactide) microparticles. Eur. J. Pharm. Biopharm. 2014, 88, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Peralta, M.; da Silva, M.; Ortega, M.; Cabrera, J.; Paraje, M. Usnic acid activity on oxidative and nitrosative stress of azole-resistant Candida albicans biofilm. Planta Med. 2016, 83, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.H.; Lucarini, R.; Mendes-Giannini, M.J.S. Effect of Usnic Acid on Candida orthopsilosis and C. parapsilosis. Antimicrob. Agents Chemother. 2012, 56, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, I.; Kinoshita, Y.; Yamamoto, Y.; Huneck, S.; Yamada, Y. Analysis of secondary metabolites from Lichen by high performance liquid chromatography with a photodiode array detector. Phytochem. Anal. 1994, 5, 197–205. [Google Scholar] [CrossRef]
- Cocuaud, C. Anti-metabolic activity of caspofungin against Candida albicans and Candida parapsilosis biofilms. J. Antimicrob. Chemother. 2005, 56, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J.-M.; Imbert, C. In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents 2008, 31, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Tableau des Tests Statistiques D’hypothèse. Available online: https://marne.u707.jussieu.fr/biostatgv/?module=tests (accessed on 13 March 2017).
Sample Availability: Not available. |
No. | Lichens | % Yield | Theoretical Chemical Composition of Lichen [25] | Main Metabolite(s) Present in the Acetone Extracts |
---|---|---|---|---|
1 | Anaptychia ciliaris | 0.2 | Nd | Nd |
2 | Bryoria fuscescens | 3.0 | Cetraric acid; fumarprotocetraric acid | Fumarprotocetraric acid |
3 | Cetraria islandica | 0.8 | Protocetraric acid; protolichesterinic acid; fumarprotocetraric acid | Fumarprotocetraric acid |
4 | Cetrelia olivetorum | 6.0 | Atranorin; perlatolic acid; imbricaric acid and derivatives; fatty acids | Atranorin |
5 | Cladonia fimbriata | 1.0 | Atranorin; convirensic acid; fumarprotocetraric and protocetraric acids | Atranorin Fumarprotocetraric acid |
6 | Cladonia furcata | 0.8 | Atranorin; cetraric and fumarprotocetraric acids | Fumarprotocetraric acid |
7 | Cladonia glauca | 1.9 | Squamatic acid | Squamatic acid |
8 | Cladonia gracilis | 1.6 | Atranorin; fumarprotocetraric acid; quaesic acid | Fumarprotocetraric acid |
9 | Cladonia incrassata | 5.5 | (−)-Usnic acid; squamatic acid; didymic, subdidymic and condidymic acids | Didymic acid; squamatic acid |
10 | Cladonia parasitica | 1.9 | Barbatic acid; thamnolic acid and derivatives | Thamnolic acid |
11 | Cladonia ramulosa | 4.6 | Fumarprotocetraric acid and derivatives; protocetraric and sekikaic acids | Unidentified depside fumarprotocetraric acid |
12 | Cladonia rangiferina | 1.5 | Atranorin and fumarprotocetraric acid | Atranorin; fumarprotocetraric acid |
13 | Cladonia scabriuscula | 2.0 | Atranorin; fumarprotocetraric and protocetraric acids | Fumarprotocetraric acid |
14 | Cladonia squamosa | 2.6 | Barbatic acid; squamatic acid; thamnolic acid and derivatives; triterpenoids | Squamatic acid; thamnolic acid |
15 | Cladonia subulata | 4.4 | Fumarprotocetraric and quaesitic acids | Fumarprotocetraric acid |
16 | Cladonia uncialis | 1.9 | Squamatic acid and (−)-usnic acid | Squamatic acid and usnic acid |
17 | Evernia prunastri | 7.5 | Atranorin; chloroatranorin; evernic acid and (+)-usnic acid | Evernic and usnic acids |
18 | Flavoparmelia caperata | 6.2 | Atranorin; caperatic acid; protocetraric acid and (+)-usnic acid | Caperatic acid; protocetraric acid and usnic acid |
19 | Hypogymnia physodes | 8.7 | Atranorin; chloroatranorin; physodalic acid; physodic acid and derivatives; protocetraric acid | Fumarprotocetraric and other unidentified depsides or depsidones |
20 | Lasallia pustulata | 5.8 | Gyrophoric acid | Gyrophoric acid |
21 | Lepraria membranacea | 5.6 | Pannaric acid | Pannaric and rocellic acids |
22 | Leprocaulon microscopicum | 8.4 | Placodiolic acid; (−)-usnic acid; zeorin | Usnic acid; placodiolic acid and zeorin |
23 | Nephroma parile | 2.8 | Terpenoids | Terpenoids |
24 | Neofuscellia pulla | 2.1 | Divaricatic acid; perlatolic acid; stenosporic acid and derivatives; gyrophoric acid | Divaricatic and perlatolic acids |
25 | Parmelia saxatilis | 10.1 | Atranorin; chloroatranorin; salazinic and consalazinic acids | Salazinic acid |
26 | Parmelia sulcata | 2.9 | Atranorin; chloroatranorin; salazinic and derivatives; lobaric acid | Salazinic acid |
27 | Platismatia glauca | 10.5 | Atranorin; caperatic acid and pseudoplacodiolic acid | Atranorin; caperatic acid |
28 | Peltigera collina | 1.4 | Terpenoids | Tenuiorin |
29 | Peltigera horizontalis | 0.7 | Terpenoids | Tenuiorin and terpenoids |
30 | Peltigera hymenina | 1.7 | Gyrophoric acid and terpenoids | Unidentified depsides and terpenoids |
31 | Peltigera rufescens | 0.6 | Nd | Nd |
32 | Pleurosticta acetabulum | 1.9 | Norstictic acid; connorstictic acid and terpenoids | Norstictic acid Terpenoids |
33 | Pseudevernia furfuracea | 9.8 | Atranorin | Atranorin |
34 | Ramalina fastigiata | 3.5 | Evernic acid and (+)-usnic acid | Evernic and usnic acids |
35 | Usnea florida | 5.4 | Alectorialic, bourgeanic, diffractaic acids; squamatic, thamnolic and (+)-usnic acids | Usnic and thamnolic acids |
36 | Xanthoparmelia conspersa | 4.8 | Stictic acid and derivatives; (+)-usnic acid; hyposalazinic and menegazziaic acids | Stictic and usnic acids |
37 | Xanthoparmelia tinctina | 3.3 | Salazinic acid; norstictic acid; protocetraric acid and (+)-usnic acid | Salazinic and usnic acids |
38 | Xanthoria parietina | 2.3 | Parietin | Parietin |
No. | Lichens | Anti-Maturation Activity IC50 (µg/mL) | Anti-Biofilm Activity | ||
---|---|---|---|---|---|
24 h | 48 h | IC50 (µg/mL) | CFU Counts Inhibition (% ± SD) | ||
1 | Anaptychia ciliaris | ≥200 | 100 | - | - |
3 | Cetraria islandica | ≥200 | 100 | - | - |
11 | Cladonia ramulosa | ≥200 | 50 | 50 | 85 ± 16 |
16 | Cladonia uncialis | ≥200 | 25 | <10 | 90 ± 14 |
17 | Evernia prunastri | 25 | 1.56 | <10 | 86 ± 11 |
30 | Peltigera hymenina | 50 | 12.5 | 50 | 80 ± 22 |
31 | Peltigera rufescens | ≥200 | 100 | - | - |
34 | Ramalina fastigiata | 25 | 3.125 | <10 | 82 ± 17 |
36 | Xanthoparmelia conspersa | 100 | 25 | <10 | 94 ± 5 |
37 | Xanthoparmelia tinctina | ≥200 | 6.25 | 100 | 82 ± 14 |
38 | Xanthoria parietina | ≥200 | 100 | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millot, M.; Girardot, M.; Dutreix, L.; Mambu, L.; Imbert, C. Antifungal and Anti-Biofilm Activities of Acetone Lichen Extracts against Candida albicans. Molecules 2017, 22, 651. https://doi.org/10.3390/molecules22040651
Millot M, Girardot M, Dutreix L, Mambu L, Imbert C. Antifungal and Anti-Biofilm Activities of Acetone Lichen Extracts against Candida albicans. Molecules. 2017; 22(4):651. https://doi.org/10.3390/molecules22040651
Chicago/Turabian StyleMillot, Marion, Marion Girardot, Lucile Dutreix, Lengo Mambu, and Christine Imbert. 2017. "Antifungal and Anti-Biofilm Activities of Acetone Lichen Extracts against Candida albicans" Molecules 22, no. 4: 651. https://doi.org/10.3390/molecules22040651
APA StyleMillot, M., Girardot, M., Dutreix, L., Mambu, L., & Imbert, C. (2017). Antifungal and Anti-Biofilm Activities of Acetone Lichen Extracts against Candida albicans. Molecules, 22(4), 651. https://doi.org/10.3390/molecules22040651