A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid
Abstract
:1. Introduction
2. Sources
3. Extraction and Isolation
4. Natural Derivatives
5. Pharmacology
5.1. Anti-Inflammation and Anti-Oxidation
5.2. Anti-Tumor
5.3. Anti-Senescence
5.4. Anti-Diabetes
5.5. Anti-Virus
5.6. Effects on Central Nervous System
5.7. Effects on the Cardiovascular System
5.8. Antifungal Activity
5.9. Other Bioactivities
6. Pharmacokinetics
7. Conclusions and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Okigawa, M.; Hwa, C.W.; Kawano, N.; Rahman, W. Biflavones in Selaginella species. Phytochemistry 1971, 10, 3286–3287. [Google Scholar] [CrossRef]
- Arwa, P.S.; Zeraik, M.L.; Ximenes, V.F.; da Fonseca, L.M.; Bolzani, V.S.; Silva, D.H.S. Redox-active biflavonoids from Garcinia brasiliensis as inhibitors of neutrophil oxidative burst and human erythrocyte membrane damage. J. Ethnopharmacol. 2015, 174, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.M.; Almowallad, F.M.; Esmat, A.; Shehata, I.A.; Abdel-Sattar, E.A. Anti-inflammatory activity of flavonoids from Chrozophora tinctoria. Phytochem. Lett. 2015, 13, 74–80. [Google Scholar] [CrossRef]
- Park, N.H.; Lee, C.W.; Bae, J.H.; Na, Y.J. Protective effects of amentoflavone on Lamin A-dependent UVB-induced nuclear aberration in normal human fibroblasts. Bioorg. Med. Chem. Lett. 2011, 21, 6482–6484. [Google Scholar] [CrossRef] [PubMed]
- Ndongo, J.T.; Issa, M.E.; Messi, A.N.; Mbing, J.N.; Cuendet, M.; Pegnyemb, D.E.; Bochet, C.G. Cytotoxic flavonoids and other constituents from the stem bark of Ochna schweinfurthiana. Nat. Prod. Res. 2015, 29, 1684–1687. [Google Scholar] [CrossRef] [PubMed]
- Coulerie, P.; Nour, M.; Maciuk, A.; Eydoux, C.; Guillemot, J.C.; Lebouvier, N.; Hnawia, E.; Leblanc, K.; Lewin, G.; Canard, B.; et al. Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp. Planta Med. 2013, 79, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; Lee, J.; Jin, H.G.; Woo, E.R.; Lee, D.G. Amentoflavone stimulates mitochondrial dysfunction and induces apoptotic cell death in Candida albicans. Mycopathologia 2012, 173, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, T.; Niu, J.G.; He, Z.Q.; Liu, Y.; Wang, F. Amentoflavone protects hippocampal neurons: Anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen. Res. 2015, 10, 1125–1133. [Google Scholar] [PubMed]
- Zheng, X.K.; Liu, C.X.; Zhai, Y.Y.; Li, L.L.; Wang, X.L.; Feng, W.S. Protection effect of amentoflavone in Selaginella tamariscina against TNF-α-induced vascular injure of endothelial cells. Acta Pharm. Sin. 2013, 48, 1503–1509. [Google Scholar]
- Chinese Pharmacopeia Commission. Pharmacopoeia of the People’s Republic of China; Chinese Medical Science Press: Beijing, China, 2015; Volume 1, pp. 226–227. [Google Scholar]
- Leong, K.I.; Alviarez, P.F.; Compagnone, R.S.; Suarez, A.I. Isolation and structural elucidation of chemical constituents of Amanoa almerindae. Pharm. Biol. 2009, 47, 496–499. [Google Scholar] [CrossRef]
- Calvo, T.R.; Lima, Z.P.; Silva, J.S.; Ballesteros, K.V.; Pellizzon, C.H.; Hiruma-Lima, C.A.; Tamashiro, J.; Brito, A.R.; Takahira, R.K.; Vilegas, W. Constituents and antiulcer effect of Alchornea glandulosa: Activation of cell proliferation in gastric mucosa during the healing process. Biol. Pharm. Bull. 2007, 30, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Calvo, T.R.; Demarco, D.; Santos, F.V.; Moraes, H.P.; Bauab, T.M.; Varanda, E.A.; Cólus, I.M.; Vilegas, W. Phenolic compounds in leaves of Alchornea triplinervia: Anatomical localization, mutagenicity, and antibacterial activity. Nat. Prod. Commun. 2010, 5, 1225–1232. [Google Scholar] [PubMed]
- Li, L.Z.; Wang, M.H.; Sun, J.B.; Liang, J.Y. Flavonoids and other constituents from Aletris spicata and their chemotaxonomic significance. Nat. Prod. Res. 2014, 28, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Azebaze, A.G.; Dongmo, A.B.; Meyer, M.; Ouahouo, B.M.; Valentin, A.; Nguemfo, E.L.; Nkengfack, A.E.; Vierling, W. Antimalarial and vasorelaxant constituents of the leaves of Allanblackia monticola (Guttiferae). Ann. Trop. Med. Parasitol. 2007, 101, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Lei, J.; Xiao, Y.C.; Xi, Z.; Yu, M.; Huang, J. The separation and indentification of biflavonoids from Androsace umbellata. West China J. Pharm. Sci. 2011, 26, 420–423. [Google Scholar]
- Trang, D.T.; Huyen, L.T.; Nhiem, N.X.; Quang, T.H.; Hang, D.T.T.; Yen, P.H.; Tai, B.H.; Anh, H.L.T.; Binh, N.Q.; Minh, C.V.; Kiem, P.V. Tirucallane glycoside from the leaves of Antidesma bunius and inhibitory NO production in BV2 cells and RAW264.7 macrophages. Nat. Prod. Commun. 2016, 11, 935–937. [Google Scholar]
- Tchinda, A.T.; Teshome, A.; Dagne, E.; Arnold, N.; Wessjohann, L.A. Squalene and amentoflavone from Antidesma laciniatum. Bull. Chem. Soc. Ethiop. 2006, 20, 325–328. [Google Scholar] [CrossRef]
- Bucar, F.; Jackak, S.M.; Noreen, Y.; Kartnig, T.; Perera, P.; Bohlin, L.; Schubert-Zsilavecz, M. Amentoflavone from Biophytum sensitivum and its effect on COX-1/COX-2 catalysed prostaglandin biosynthesis. Planta Med. 1998, 64, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, A.; Andrabi, S.M.A.; Qureshi, M. Flavonoids from Biota semipervirens. Indian J. Heterocycl. Chem. 2001, 11, 87. [Google Scholar]
- Sannomiya, M.; Fonseca, V.B.; da Silva, M.A.; Rocha, L.R.M.; dos Santos, L.C.; Hiruma-Lima, C.A.; Brito, A.R.M.S.; Vilegas, W. Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts. J. Ethnopharmacol. 2005, 97, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sannomiya, M.; Cardoso, C.R.; Figueiredo, M.E.; Rodrigues, C.M.; dos Santos, L.C.; dos Santos, F.V.; Serpeloni, J.M.; Cólus, I.M.; Vilegas, W.; Varanda, E.A. Mutagenic evaluation and chemical investigation of Byrsonima intermedia A. Juss. leaf extracts. J. Ethnopharmacol. 2007, 112, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Bahia, M.V.; David, J.P.; David, J.M. Occurrence of biflavones in leaves of Caesalpinia pyramidalis specimens. Quim. Nova 2010, 33, 1297–1300. [Google Scholar] [CrossRef]
- Prasad, J.S.; Krishnamurty, H.G. 4-Epiisocommunic acid and amentoflavone from Callitris rhomboidea. Phytochemistry 1977, 16, 801–803. [Google Scholar] [CrossRef]
- Chien, S.C.; Liu, H.K.; Kuo, Y.H. Two new compouuds from the leaves of Calocedrus microlepic var. formosana. Chem. Pharm. Bull. 2004, 52, 762–763. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, K.L.; dos Santos, A.R.S.; Mattos, P.E.O.; Yunes, R.A.; Delle-Monache, F.; Cechinel, V. Chemical composition and analgesic activity of Calophyllum brasiliense leaves. Therapie 2001, 56, 431–434. [Google Scholar] [PubMed]
- Aminudin, N.I.; Ahmad, F.; Taher, M.; Zulkifli, R.M. Cytotoxic and antibacterial activities of constituents from Calophyllum ferrugineum Ridley. Rec. Nat. Prod. 2016, 10, 649–653. [Google Scholar]
- Ferchichi, L.; Derbré, S.; Mahmood, K.; Touré, K.; Guilet, D.; Litaudon, M.; Awang, K.; Hadi, A.H.; le Ray, A.M.; Richomme, P. Bioguided fractionation and isolation of natural inhibitors of advanced glycation end-products (AGEs) from Calophyllum flavoramulum. Phytochemistry 2012, 78, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminudin, N.I.; Ahmad, F.; Taher, M.; Zulkifli, R.M. Incrassamarin A-D: Four new 4-substituted coumarins from Calophyllum incrassatum and their biological activities. Phytochem. Lett. 2016, 16, 287–293. [Google Scholar] [CrossRef]
- Goh, S.H.; Jantan, I.; Waterman, P.G. Neoflavonoid and Biflavonoid Constituents of Calophyllum inophylloide. J. Nat. Prod. 1992, 55, 1415–1420. [Google Scholar] [CrossRef]
- Iinuma, M.; Tosa, H.; Tanaka, T.; Ito, T.; Yonemori, S.; Chelladurai, V.; Aquil, M.; Takahashi, Y.; Naganawa, H. Occurrence of xanthonolignoids in Guttifereous plants. Heterocycles 1996, 43, 1521–1527. [Google Scholar] [CrossRef]
- Chen, G.Y.; Wu, X.P.; Dai, C.Y.; Zhao, J.; Han, C.R.; Song, X.P.; Zhong, Q.X. Chemical Constituents in the Roots of Calophyllum membranaceum Gardn. Acta Sci. Nat. Univ. Sunyatseni 2009, 48, 52–56. [Google Scholar]
- Chen, G.Y.; Han, C.R.; Song, X.P.; Huang, H.R.; Lin, Y.C. Chemical Constituents from leaves of Calophyllum membranaceum Gardn. Chem. Ind. For. Prod. 2003, 23, 73–76. [Google Scholar]
- Alarcón, A.B.; Cuesta-Rubio, O.; Pérez, J.C.; Piccinelli, A.L.; Rastrelli, L. Constituents of the Cuban endemic species Calophyllum pinetorum. J. Nat. Prod. 2008, 71, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
- Oubada, A.; Garcia, M.; Bello-Alarcon, A.; Cuesta-Rubio, O.; Monzote, L. Antileishmanial activity of leaf extract from Calophyllum rivulare against Leishmania amazonensis. Emirates J. Food Agric. 2014, 26, 807–812. [Google Scholar] [CrossRef]
- Aminudin, N.I.; Ahmad, F.; Taher, M.; Zulkifli, R.M. α-Glucosidase and 15-lipoxygenase inhibitory activities of phytochemicals from Calophyllum symingtonianum. Nat. Prod. Commun. 2015, 10, 1585–1587. [Google Scholar] [PubMed]
- Cao, S.G.; Sim, K.Y.; Goh, S.H. Biflavonoids of Calophyllum venulosum. J. Nat. Prod. 1997, 60, 1245–1250. [Google Scholar] [CrossRef]
- Njock, G.B.B.; Bartholomeusz, T.A.; Bikobo, D.N.; Foroozandeh, M.; Shivapurkar, R.; Christen, P.; Pegnyemb, D.E.; Jeannerat, D. Structure and dynamic of three indole alkaloids from the Campylospermum Genus (Ochnaceae). Helv. Chim. Acta 2013, 96, 1298–1304. [Google Scholar] [CrossRef]
- Manga, S.S.E.; Tih, A.E.; Ghogomu, R.T.; Blond, A.; Bodo, B. Biflavonoid constituents of Campylospermum mannii. Biochem. Syst. Ecol. 2009, 37, 402–404. [Google Scholar] [CrossRef]
- He, Z.; Xia, W.; Chen, J. Isolation and structure elucidation of phenolic compounds in Chinese olive (Canarium album L.) fruit. Eur. Food Res. Technol. 2008, 226, 1191–1196. [Google Scholar] [CrossRef]
- Chen, R.; Liang, J.Y.; Lu, H.Y.; Yang, Y.; Liu, R. Study on chemical constituents of the leaves of Canarium album (Lour.) Raeusch. Chem. Ind. For. Prod. 2007, 27, 45–48. [Google Scholar]
- Lv, Z.C.; Yin, Y.; Lin, L.J.; Peng, Y.H. Chemical constituents from Canarium pimela fruits. J. Chin. Med. Mater. 2014, 37, 1801–1803. [Google Scholar]
- Helene, T.; Serge, F.; Ngadjui, B.T.; Etienne, D.; Abegaz, B.M. Phenolic metabolites from the seeds of Canarium schweinfurthii. Bull. Chem. Soc. Ethiop. 2000, 14, 155–159. [Google Scholar] [CrossRef]
- Shaari, K.; Waterman, P.G. Podophyllotoxin-type lignans as major constituents of the stems and leaves of Casearia clarkei. J. Nat. Prod. 1994, 57, 720–724. [Google Scholar] [CrossRef]
- Castañeda, P.; Garcia, M.R.; Hernandez, B.E.; Torres, B.A.; Anaya, A.L.; Mata, R. Effects of some compounds isolated from Celaenodendron mexicanum standl (euphorbiaceae) on seeds and phytopathogenic fungi. J. Chem. Ecol. 1992, 18, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.W.; He, G.F.; Yin, W.F. Studies on biflavonoids of the leaves of Cephalotaxus fortunei Hook. F. var. alpina native to China. Acta Bot. Sinica 1984, 26, 416–418. [Google Scholar]
- Lee, M.K.; Lim, S.W.; Yang, H.; Sung, S.H.; Lee, H.S.; Park, M.J.; Kim, Y.C. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorg. Med. Chem. Lett. 2006, 16, 2850–2854. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.W.; He, G.F.; Yin, W.F. Oliveriflavone, a new biflavonoid from Cephalotaxus oliveri Mast. Acta Bot. Sin. 1986, 28, 641–645. [Google Scholar]
- Krauze-Baranowska, M.; Poblocka, L.; El Hela, A.A. Biflavones from Chamaecyparis obtusa. Z. Naturforsch. C 2005, 60, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Ishola, I.O.; Agbaje, O.E.; Narender, T.; Adeyemi, O.O.; Shukla, R. Bioactivity guided isolation of analgesic and anti-inflammatory constituents of Cnestis ferruginea Vahl ex DC (Connaraceae) root. J. Ethnopharmacol. 2012, 142, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, J.; Liu, P.; Liu, J.P.; Xin, H.L.; Zhang, L.; Wang, Y.L.; Tang, K.X. Study on chemical constituents of the branches and leaves of Cunninghamia lanceolata. J. Shanghai Jiaotong Univ. 2011, 29, 67–71. [Google Scholar]
- Krauze-Baranowska, M.; Cisowski, W.; Wiwart, M.; Madziar, B. Antifungal biflavones from Cupressocyparis leylandii. Planta Med. 1999, 65, 572–573. [Google Scholar] [CrossRef] [PubMed]
- Li, R.J.; Li, Y.; Wang, X.L. Study on the chemical constituents of Cupressus chengiana S.Y.Hu. J. Southwest Univ. Natl. 2014, 40, 523–526. [Google Scholar]
- Ibrahim, N.A.; El-Seedi, H.R.; Mohammed, M.M. Phytochemical investigation and hepatoprotective activity of Cupressus sempervirens L. leaves growing in Egypt. Nat. Prod. Res. 2007, 21, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Mahender, G.; Rao, Y.K.; Tirupathi, P. Studies on phytochemicals, part 58. A new biflavonold from Cycas beddomei. Indian J. Chem. B 2006, 45, 1933–1935. [Google Scholar]
- Moawad, A.; Hetta, M.; Zjawiony, J.K.; Jacob, M.R.; Hifnawy, M.; Marais, J.P.; Ferreira, D. Phytochemical investigation of Cycas circinalis and Cycas revoluta leaflets: moderately active antibacterial biflavonoids. Planta Med. 2010, 76, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, X.R.; Jiang, S.Y.; Li, C.L.; Peng, S.L. Chemical constituents of Cycas panzhihuaensis. Chin. J. Appl. Environ. Biol. 1999, 5, 367–370. [Google Scholar]
- Laishram, S.; Sheikh, Y.; Moirangthem, D.S.; Deb, L.; Pal, B.C.; Talukdar, N.C.; Borah, J.C. Anti-diabetic molecules from Cycas pectinata Griff. traditionally used by the Maiba-Maibi. Phytomedicine 2015, 22, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Chaabi, M.; Antheaume, C.; Weniger, B.; Justiniano, H.; Lugnier, C.; Lobstein, A. Biflavones of Decussocarpus rospigliosii as phosphodiesterases inhibitors. Planta Med. 2007, 73, 1284–1286. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Tang, H.F.; Qiu, F.; Wang, X.J.; Xue, G.J.; Li, J. Antibacterial constituents of extracts of the aerial parts of Discocleidion rufescens. J. Shenyang Pharm. Univ. 2009, 26, 191–195. [Google Scholar]
- Mbaveng, A.T.; Ngameni, B.; Kuete, V.; Simo, I.K.; Ambassa, P.; Roy, R.; Bezabih, M.; Etoa, F.X.; Ngadjui, B.T.; Abegaz, B.M.; et al. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol. 2008, 116, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Ng’ang’a, M.M.; Hussain, H.; Chhabra, S.; Langat-Thoruwa, C.; Irungu, B.N.; Al-Harrasi, A.; Riaz, M.; Krohn, K. Antiplasmodial activity of compounds from Drypetes gerrardii. Chem. Nat. Compd. 2012, 48, 339–340. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Bai, X.C.; Cao, X.L.; Yun, Y. Chemical constituents from Drypetes hainanensis stems and leaves. J. Chin. Med. Mater. 2015, 38, 2095–2097. [Google Scholar]
- Ling, S.K.; Fukumori, S.; Tomii, K.; Tanaka, T.; Kouno, I. Isolation, purification and identification of chemical constituents from Elateriospermum tapos. J. Trop. For. Sci. 2006, 18, 81–85. [Google Scholar]
- Jiang, S.J.; Wei, F.; Lu, J.; Lin, R.C.; Zhang, Z.J. Chemical studies on the Galeobdolon chinense. J. China Pharm. Univ. 2002, 33, 487–488. [Google Scholar]
- Al-Shagdari, A.; Alarcón, A.B.; Cuesta-Rubio, O.; Piccinelli, A.L.; Rastrelli, L. Biflavonoids, main constituents from Garcinia bakeriana leaves. Nat. Prod. Commun. 2013, 8, 1237–1240. [Google Scholar] [PubMed]
- Abderamane, B.; Tih, A.E.; Ghogomu, R.T.; Blond, A.; Bodo, B. New flavonoid C–O–C dimers and other chemical constituents from Garcinia brevipedicellata stem heartwood. Z. Naturforsch. C 2016, 71, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yang, J.S. Chemical constituents from fruits of Garcinia cowa. Chin. Pharm. J. 2006, 41, 660–661. [Google Scholar]
- Abe, F.; Nagafuji, S.; Okabe, H.; Akahane, H.; Estrada-Muniz, E.; Huerta-Reyes, M.; Reyes-Chilpa, R. Trypanocidal constituents in plants 3. Leaves of Garcinia intermedia and heartwood of Calophyllum brasiliense. Biol. Pharm. Bull. 2004, 27, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Kaikabo, A.A.; Eloff, J.N. Antibacterial activity of two biflavonoids from Garcinia livingstonei leaves against Mycobacterium smegmatis. J. Ethnopharmacol. 2011, 138, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Figueroa, M.; To, S.; Baggett, S.; Jiang, B.; Basile, M.J.; Weinstein, I.B.; Kennelly, E.J. Benzophenones and biflavonoids from Garcinia livingstonei fruits. J. Agric. Food Chem. 2010, 58, 4749–4755. [Google Scholar] [CrossRef] [PubMed]
- Trisuwan, K.; Rukachaisirikul, V.; Phongpaichit, S.; Hutadilok-Towatana, N. Tetraoxygenated xanthones and biflavanoids from the twigs of Garcinia merguensis. Phytochem. Lett. 2013, 6, 511–513. [Google Scholar] [CrossRef]
- Ito, T.; Yokota, R.; Watarai, T.; Mori, K.; Oyama, M.; Nagasawa, H.; Matsuda, H.; Iinuma, M. Isolation of six isoprenylated biflavonoids from the leaves of Garcinia subelliptica. Chem. Pharm. Bull. 2013, 61, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Baggett, S.; Protiva, P.; Mazzola, E.P.; Yang, H.; Ressler, E.T.; Basile, M.J.; Weinstein, I.B.; Kennelly, E.J. Bioactive benzophenones from Garcinia xanthochymus fruits. J. Nat. Prod. 2005, 68, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Lobstein-Guth, A.; Briançon-Scheid, F.; Victoire, C.; Haag-Berrurier, M.; Anton, R. Isolation of amentoflavone from Ginkgo biloba. Planta Med. 1988, 54, 555–556. [Google Scholar] [CrossRef] [PubMed]
- Fritz, D.; Venturi, C.R.; Cargnin, S.; Schripsema, J.; Roehe, P.M.; Montanha, J.A.; von Poser, G.L. Herpes virus inhibitory substances from Hypericum connatum Lam., a plant used in southern Brazil to treat oral lesions. J. Ethnopharmacol. 2007, 113, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Berghöfer, R.; Hölzl, J. Isolation of I3′, II8′′-Biapigenin (Amentoflavone) from Hypericum perforatum. Planta Med. 1989, 55, 91. [Google Scholar] [CrossRef]
- Kuroshima, K.N.; Campos-Buzzi, F.; Yunes, R.A.; Delle Monache, F.; Cechinel, V. Chemical composition and antinociceptive properties of Hyeronima alchorneoides leaves. Pham. Biol. 2005, 43, 573–578. [Google Scholar] [CrossRef]
- Nakanishi, T.; Inatomi, Y.; Murata, H.; Iida, N.; Inada, A.; Lang, F.A.; Murata, J. Phytochemical study on American plants I. Two new phenol glucosides, together with known biflavones and diterpene, from leaves of Juniperus occidentalis Hook. Chem. Pharm. Bull. 2002, 50, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.J.; Seo, H.; Yang, H.; Kim, J.; Sung, S.H.; Kim, Y.C. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264.7 macrophage cells. J. Enzym. Inhib. Med. Chem. 2012, 27, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Dora, G.; Edwards, J.M. Taxonomic status of Lanaria lanata and isolation of a novel biflavone. J. Nat. Prod. 1991, 54, 796–801. [Google Scholar] [CrossRef]
- Wang, P.P.; Luo, J.; Yang, M.H.; Kong, L.Y. Chemical constituents of Lobelia chinensis. Chin. Tradit. Herb. Drugs 2013, 44, 794–797. [Google Scholar]
- Jiang, Y.; Qian, Z.M.; Zhang, T.D.; Li, P. Chemical constituents in aerial parts of Lonicera chrysantha Turcz (II). Chem. Ind. For. Prod. 2008, 28, 58–60. [Google Scholar]
- Sun, M.Y.; Feng, X.; Yin, M.; Chen, Y.; Zhao, X.Z.; Dong, Y.F. A biflavonoid from stems and leaves of Lonicera macranthoides. Chem. Nat. Compd. 2012, 48, 231–233. [Google Scholar] [CrossRef]
- Zheng, G.Y.; Ma, Y.Y.; Mu, X.R.; Lu, X.L.; Zhai, M. Study on the chemical constituents of Lonicera similes. J. Chin. Med. Mater. 2012, 35, 1792–1795. [Google Scholar]
- De Oliveira, M.C.C.; de Carvalho, M.G.; da Silva, C.J.; Werle, A.A. New biflavonoid and other constituents from Luxemburgia nobilis (EICHL). J. Brazil. Chem. Soc. 2002, 13, 119–123. [Google Scholar] [CrossRef]
- Gao, F.F.; Zhao, D.; Deng, J. New flavonoids from Lysimachia christinae Hance. Helv. Chim. Acta 2013, 96, 985–989. [Google Scholar] [CrossRef]
- Ge, D.D.; Zhang, Y.; Liu, E.W.; Wang, T.; Hu, L.M. Chemical constituents of Mangifera indica leaves (I). Chin. Tradit. Herb. Drugs 2011, 42, 428–431. [Google Scholar]
- Li, S.S.; Dai, H.F.; Zhao, Y.X.; Zuo, W.J.; Li, X.N.; Mei, W.L. Chemical constituents from the stems of Cassava (Manihot esculenta) in Hainan. J. Trop. Subtrop. Bot. 2012, 20, 197–200. [Google Scholar]
- Krauze-Baranowska, M.; Mardarowicz, M.; Wiwart, M. The chemical composition of Microbiota decussata. Z. Naturforsch. C 2002, 57, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Morita, N.; Shimizu, M.; Arisawa, M.; Shirataki, Y. Isolation of ametoflavone and 2 new glycosides from leaves of Nandina domestica Thunb. Chem. Pharm. Bull. 1974, 22, 2750–2752. [Google Scholar] [PubMed]
- Pinto, M.E.F.; da Silva, M.S.; Schindler, E.; Barbosa, J.M.; El-Bacha, R.D.; Castello-Branco, M.V.S.; Agra, M.D.; Tavares, J.F. 3′,8″-Biisokaempferide, a cytotoxic biflavonoid and other chemical constituents of Nanuza plicata (Velloziaceae). J. Brazil. Chem. Soc. 2010, 21, 1819–1824. [Google Scholar] [CrossRef]
- De Araujo, M.F.; dos Santos, C.B.; Cavalcanti, J.F.; Pereira, F.S.; Mendes, G.S.; Werle, A.A.; Romanos, M.T.V.; de Carvalho, M.G. Proposed active compounds from Ouratea parviflora. J. Med. Plants Res. 2011, 5, 2489–2493. [Google Scholar]
- Velandia, J.R.; de Carvalho, M.G.; Braz-Filho, R.; Werle, A.A. Biflavonoids and a glucopyranoside derivative from Ouratea semiserrata. Phytochem. Anal. 2002, 13, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Pegnyemb, D.E.; Mbing, J.N.; Atchade, A.D.; Tih, R.G.; Sondengam, B.L.; Blond, A.; Bodo, B. Antimicrobial biflavonoids from the aerial parts of Ouratea sulcata. Phytochemistry 2005, 66, 1922–1926. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Liu, X.K. Chemical constituents from edible part of Pistacia chinensis. Chin. Tradit. Herb. Drugs 2009, 40, 186–189. [Google Scholar]
- Gu, Y.L.; Xu, Y.M.; Fang, S.D. The chemical constituents from Podocarpus imbricadus. Acta Bot. Sin. 1990, 32, 631–636. [Google Scholar]
- Song, Y.L.; Jiang, Y.; Bi, D.; Tian, X.; Liang, L.J.; Tu, P.F. Chemical constituents from n-butanol extract of aerial part of Polygala sibirica. China J. Chin. Mater. Med. 2012, 37, 471–474. [Google Scholar]
- Xiong, Y.; Deng, K.Z.; Guo, Y.Q.; Gao, W.Y. Studies on chemical constituents of flavonoids and glycosides in Ranunculus ternatus. Chin. Tradit. Herb. Drugs 2008, 39, 1449–1452. [Google Scholar]
- Amaro-Luis, J.M.; Amesty, A.; Bahsas, A.; Montealegre, R. Biflavones from the leaves of Retrophyllum rospigliosii. Biochem. Syst. Ecol. 2008, 36, 235–237. [Google Scholar] [CrossRef]
- Svenningsen, A.B.; Madsen, K.D.; Liljefors, T.; Stafford, G.I.; van Staden, J.; Jager, A.K. Biflavones from Rhus species with affinity for the GABA(A)/benzodiazepine receptor. J. Ethnopharmacol. 2006, 103, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.M.; Anderson, H.; Flavin, M.T.; Pai, Y.H.; Mata-Greenwood, E.; Pengsuparp, T.; Pezzuto, J.M.; Schinazi, R.F.; Hughes, S.H.; Chen, F.C. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J. Nat. Prod. 1997, 60, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.S.; Lin, Y.; Han, H.D.; Hu, H.Q.; Wang, X.L. Chemical constituents in twigs and leaves of Sabina pingii var. wilsonii. Chin. Tradit. Herb. Drugs 2012, 43, 1724–1726. [Google Scholar]
- Ma, Y.Y.; Fu, J.S.; Shan, X.Q.; Wang, L.; Wang, B.; Wang, X.L. Study on chemical constituents of Sabina sinoalpina. Chin. Tradit. Herb. Drugs 2010, 41, 32–36. [Google Scholar]
- Zhao, J.; Yan, M.; Huang, Y.; He, W.Y.; Zhao, Y. Flavonoids from the leaves of Sabina vulgaris Antoine. Chem. Ind. For. Prod. 2008, 28, 33–37. [Google Scholar]
- Swamy, R.C.; Kunert, O.; Schuhly, W.; Bucar, F.; Ferreira, D.; Rani, V.S.; Kumar, B.R.; Rao, A.V.N.A. Structurally unique biflavonoids from Selaginella chrysocaulos and Selaginella bryopteris. Chem. Biodivers. 2006, 3, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.C.; Kuo, Y.C.; Chou, C.J. Cytotoxic biflavonoids from Selaginella delicatula. J. Nat. Prod. 2000, 63, 627–630. [Google Scholar] [CrossRef] [PubMed]
- López-Sáez, J.A.; Pérez-Alonso, M.J.; Negueruela, A.V. Biflavonoids of Selaginella denticulata growing in Spain. Z. Naturforsch. C 1994, 49, 267–270. [Google Scholar]
- Lin, R.C.; Skaltsounis, A.L.; Seguin, E.; Tillequin, F.; Koch, M. Phenolic Constituents of Selaginella doederleinii. Planta Med. 1994, 60, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.X.; Huang, K.L.; Shi, S.Y.; Zhang, H. Study on the chemical constituents of Selaginella involvens Spring and antibacterial activity. Nat. Prod. Res. Dev. 2009, 21, 973–975. [Google Scholar]
- Tan, W.J.; Xu, J.C.; Li, L.; Chen, K.L. Bioactive compounds of inhibiting xanthine oxidase from Selaginella labordei. Nat. Prod. Res. 2009, 23, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.M.; Syu, M.J.; Huang, Y.T.; Chen, C.C.; Ou, J.C. Selective cytotoxicity of ginkgetin from Selaginella moellendorffii. J. Nat. Prod. 1997, 60, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.I.; Benítez, W.V.; Colín, A.; Bye, R.; Ríos-Gómez, R.; Calzada, F. Evaluation of the diuretic activity in two Mexican medicinal species: Selaginella nothohybrida and Selaginella lepidophylla and its effects with ciclooxigenases inhibitors. J. Ethnopharmacol. 2015, 163, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.S.; Chen, L.Z.; Xu, K.P.; Zheng, Q.C.; Xu, Z.; Huang, Z.H.; Shu, J.H.; Deng, T. Study on the chemical constituents of Selaginella pulvinata Maxim. Chin. J. Org. Chem. 2004, 24, 1082–1085. [Google Scholar]
- Gao, X.J.; Hu, X.L.; Wang, K.W. Biflavonoid constituents from Selaginella remotifolia Spring. Chin. Pharm. J. 2016, 51, 1739–1743. [Google Scholar]
- Reddy, N.P.; Reddy, B.A.K.; Gunasekar, D.; Blond, A.; Bodo, B. New biflavonoid from Selaginella rupestris. Nat. Prod. Commun. 2007, 2, 659–662. [Google Scholar]
- Chakravarthy, B.K.; Rao, Y.V.; Gambhir, S.S.; Gode, K.D. Isolation of amentoflavone from Selaginella rupestris and its pharmacological activity on central nervous system, smooth muscles and isolated frog heart preparations. Planta Med. 1981, 43, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Huneck, S.; Khaidav, T. Amentoflavone from Selaginella sanquinolenta. Pharmazie 1985, 40, 431. [Google Scholar]
- López-Sáez, J.A.; Pérez-Alonso, M.J.; Negueruela, A.V. The biflavonoid pattern of Selaginella selaginoides. Z. Naturforsch. C 1994, 49, 265–266. [Google Scholar]
- Ma, S.C.; But, P.P.H.; Ooi, V.E.C.; He, Y.H.; Lee, S.H.S.; Lee, S.F.; Lin, R.C. Antiviral amentoflavone from Selaginella sinensis. Biol. Pharm. Bull. 2001, 24, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Q.; Lin, R.C.; Ma, S.C.; Feng, F. Studies on chemical constituents of Selaginella stauntoniana (I). Chin. Tradit. Herb. Drugs 2003, 34, 298–299. [Google Scholar]
- Kang, D.G.; Yin, M.H.; Oh, H.; Lee, D.H.; Lee, H.S. Vasorelaxation by amentoflavone isolated from Selaginella tamariscina. Planta Med. 2004, 70, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.X.; Zheng, Y.; Zhi, H.; Dai, Y.; Wang, N.L.; Fang, Y.X.; Du, Z.Y.; Zhang, K.; Li, M.M.; Wu, L.Y.; et al. New 3′,8″-linked biflavonoids from Selaginella uncinata displaying protective effect against Anoxia. Molecules 2011, 16, 6206–6214. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.L.; Chai, H.; Gupta, M.P.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Beecher, C.W.; Kinghorn, A.D. Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry 1995, 40, 129–134. [Google Scholar] [CrossRef]
- Li, Y.M.; Zhao, Y.Y.; Fan, Y.B.; Wang, X.; Cai, L.N. Flavonoids from Speranskia Tuberculata. J. Chin. Pharm. Sci. 1997, 6, 70–74. [Google Scholar]
- Ayers, S.; Zink, D.L.; Mohn, K.; Powell, J.S.; Brown, C.M.; Murphy, T.; Brand, R.; Pretorius, S.; Stevenson, D.; Thompson, D.; et al. Flavones from Struthiola argentea with anthelmintic activity in vitro. Phytochemistry 2008, 69, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Krauze-Baranowska, M.; Wiwart, M. Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba. Z. Naturforsch. C 2003, 58, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Kim, B.J.; Lee, E.H.; Osborne, N.N. Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells). Neurochem. Int. 2010, 57, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.H.; Ryoo, I.J.; Kim, Y.H.; Choo, S.J.; Yoo, I.D. Free radical scavenging and antielastase activities of flavonoids from the fruits of Thuja orientalis. Arch. Pharm. Res. 2009, 32, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Voirin, B.; Jay, M. Presence of amentoflavone in Tmesipteris tannensis. Phytochemistry 1977, 16, 2043–2044. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Zhang, H.J.; Niu, X.M.; Yao, P.; Sun, H.D.; Fong, H.H.S. Chemical constituents from Amentotaxus yunnanensis and Torreya yunnanensis. J. Nat. Prod. 2003, 66, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, L.; Gao, J.; Foddai, S.; Serafini, M.; Ventrone, A.; Nicoletti, M. Iridoid glucosides from Viburnum chinshanense. Nat. Prod. Res. 2006, 20, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Lee, J.W.; Jin, Q.H.; Kim, S.Y.; Lee, D.; Hong, J.T.; Kim, Y.; Lee, M.K.; Hwang, B.Y. Biflavones and furanone glucosides from Zabelia tyaihyonii. Helv. Chim. Acta 2015, 98, 1419–1425. [Google Scholar] [CrossRef]
- Ruan, X.; Yan, L.Y.; Li, X.X.; Liu, B.; Zhang, H.; Wang, Q. Optimization of process parameters of extraction of amentoflavone, quercetin and ginkgetin from Taxus chinensis using supercritical CO2 plus co-solvent. Molecules 2014, 19, 17682–17696. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Tian, M.; Row, K.H. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A 2013, 1285, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.L.; Sheng, X.F.; Xu, K.P.; Tan, G.S.; Zou, H. Flavonoids from Selaginella uncinata. China J. Chin. Mater. Med. 2015, 40, 3005–3008. [Google Scholar]
- Li, S.G.; Zhao, M.F.; Li, Y.X.; Sui, Y.X.; Yao, H.; Huang, L.Y.; Lin, X.H. Preparative isolation of six anti-tumour biflavonoids from Selaginella doederleinii Hieron by high-speed counter-current chromatography. Phytochem. Anal. 2014, 25, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, S.; Ma, B.; Chen, L.N. Rapid screening and detection of XOD inhibitors from S. tamariscina by ultrafiltration LC-PDA-ESI-MS combined with HPCCC. Anal. Bioanal. Chem. 2014, 406, 7379–7387. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.K.; Jung, H.A.; Chung, H.Y.; Choi, J.S. In vitro peroxynitrite scavenging activity of 6-hydroxykynurenic acid and other flavonoids from Gingko biloba yellow leaves. Arch. Pharm. Res. 2006, 29, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Kunert, O.; Swamy, R.C.; Kaiser, M.; Presser, A.; Buzzi, S.; Rao, A.V.N.A.; Schuhly, W. Antiplasmodial and leishmanicidal activity of biflavonoids from Indian Selaginella bryopteris. Phytochem. Lett. 2008, 1, 171–174. [Google Scholar] [CrossRef]
- Song, R.; Liu, L.F.; Ma, H.Y.; Fan, S.Y.; Wang, H. Chemical Constituents of Selaginella mollendorfii. Pharm. Clin. Res. 2016, 24, 318–320. [Google Scholar]
- Zou, Z.X.; Xu, K.P.; Zou, H.; Zhang, Q.; Liu, M.Z.; Tan, G.S. Biflavonoids from Selaginella moellendorfii Hieron. Cent. South Pharm. 2012, 10, 4–6. [Google Scholar]
- Camacho, M.D.; Mata, R.; Castaneda, P.; Kirby, G.C.; Warhurst, D.C.; Croft, S.L.; Phillipson, J.D. Bioactive compounds from Celaenodendron mexicanum. Planta Med. 2000, 66, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.H.; Zhang, D.; Xu, L.Z.; Yang, S.L. Study on chemical constituents of Podocarpus brevifolius. Chin. Tradit. Herb. Drugs 1997, 28, 586–588. [Google Scholar]
- Pattamadilok, D.; Suttisri, R. Seco-terpenoids and other constituents from Elateriospermum tapos. J. Nat. Prod. 2008, 71, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.M.; Fang, S.D.; He, Q.M. The chemical constituents in Dacrydium pierrei. Acta Bot. Sin. 1991, 33, 646–648. [Google Scholar]
- Cheng, X.L.; Ma, S.C.; Yu, J.D.; Yang, S.Y.; Xiao, X.Y.; Hu, J.Y.; Lu, Y.; Shaw, P.C.; But, P.P.; Lin, R.C. Selaginellin A and B, two novel natural pigments isolated from Selaginella tamariscina. Chem. Pharm. Bull. 2008, 56, 982–984. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wang, C.X.; Li, Y.L.; Liu, C.Y.; Rong, Y.H. Chemical constituents from Selaginella doederleinii and their bioactivities. Chin. Tradit. Herb. Drugs 2013, 44, 3270–3275. [Google Scholar]
- Liu, X.Q.; Zhang, X.D.; Zhu, Y.L.; Shin, B.Y.; Wu, S.X. Structrue identification of biflavones and determination of taxol from Taxus madia. J. Chin. Med. Mat. 2008, 31, 1499–1501. [Google Scholar]
- Bagla, V.P.; McGaw, L.J.; Elgorashi, E.E.; Eloff, J.N. Antimicrobial activity, toxicity and selectivity index of two biflavonoids and a flavone isolated from Podocarpus henkelii (Podocarpaceae) leaves. BMC Complement. Altern. Med. 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.M.; Fang, S.D. The chemical constituents from Podocarpus nagi (II). Acta Bot. Sin. 1991, 33, 406–408. [Google Scholar]
- Parmar, V.S.; Vardhan, A.; Bisht, K.S.; Sharma, N.K.; Jain, R.; Taneja, P.; Tyagi, O.D.; Boll, P.M. A rare biflavone from Taxus baccata. Indian J. Chem. B 1993, 32, 601–603. [Google Scholar]
- Glensk, M.; Wlodarczyk, M.; Stefanowicz, P.; Kucharska, A. Biflavonoids from the Wollemi Pine, Wollemia nobilis (Araucariaceae). Biochem. Syst. Ecol. 2013, 46, 18–21. [Google Scholar] [CrossRef]
- Lee, C.W.; Choi, H.J.; Kim, H.S.; Kim, D.H.; Chang, I.S.; Moon, H.T.; Lee, S.Y.; Oh, W.K.; Woo, E.R. Biflavonoids isolated from Selaginella tamariscina regulate the expression of matrix metalloproteinase in human skin fibroblasts. Bioorg. Med. Chem. 2008, 16, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Pokharel, Y.R.; Kim, M.R.; Woo, E.R.; Choi, H.K.; Kang, K.W. Inhibition of inducible nitric oxide synthase by sumaflavone isolated from Selaginella tamariscina. J. Ethnopharmacol. 2006, 105, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.R. The structures of amentoflavone glycosides isolated from Psilotum nudum. Phytochemistry 1984, 23, 2053–2056. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Lin, C.H.; Hwang, S.Y.; Shen, Y.C.; Lee, Y.L.; Li, S.Y. A novel cytotoxic C-methylated biflavone from the stem of Cephalotaxus wilsoniana. Chem. Pharm. Bull. 2000, 48, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Moawad, A.; Hetta, M.; Zjawiony, J.K.; Ferreira, D.; Hifnawy, M. Two new dihydroamentoflavone glycosides from Cycas revoluta. Nat. Prod. Res. 2014, 28, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.L.; Xu, J.C.; Lin, X.H.; Chen, K.L. Study on Biflavonoids from Selaginella uncinata (Desv.) Spring. Chin. Pharm. J. 2009, 44, 15–19. [Google Scholar]
- Das, B.; Mahender, G.; Rao, Y.K.; Prabhakar, A.; Jagadeesh, B. Biflavonoids from Cycas beddomei. Chem. Pharm. Bull. 2005, 53, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Na, Z.; Xu, Y.K. Chemical constituents from Dysoxylum cauliflorum (Meliaceae). Nat. Prod. Res. Dev. 2012, 24, 777–779. [Google Scholar]
- Kim, J.H.; Tai, B.H.; Yang, S.Y.; Kim, J.E.; Kim, S.K.; Kim, Y.H. Soluble Epoxide Hydrolase Inhibitory Constituents from Selaginella tamariscina. B. Korean Chem. Soc. 2015, 36, 300–304. [Google Scholar] [CrossRef]
- Ishola, I.O.; Chaturvedi, J.P.; Rai, S.; Rajasekar, N.; Adeyemi, O.O.; Shukla, R.; Narender, T. Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells. J. Ethnopharmacol. 2013, 146, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Rho, H.S.; Yang, Y.; Yoon, J.Y.; Lee, J.; Hong, Y.D.; Kim, H.C.; Choi, S.S.; Kim, T.W.; Shin, S.S.; et al. Extracellular signal-regulated kinase is a direct target of the anti-inflammatory compound amentoflavone derived from Torreya nucifera. Mediat. Inflamm. 2013, 2013, 761506. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Wang, L.; Han, W.J.; Mai, W.Q.; Han, L.; Chen, D.F. Amentoflavone protects against hydroxyl radical-induced DNA damage via antioxidant mechanism. Turk. J. Biochem. 2014, 39, 30–36. [Google Scholar] [CrossRef]
- Pei, J.S.; Liu, C.C.; Hsu, Y.N.; Lin, L.L.; Wang, S.C.; Chung, J.G.; Bau, D.T.; Lin, S.S. Amentoflavone induces cell-cycle arrest and apoptosis in MCF-7 human breast cancer cells via mitochondria-dependent pathway. In Vivo 2012, 26, 963–970. [Google Scholar] [PubMed]
- Siveen, K.S.; Kuttan, G. Effect of Amentoflavone, a phenolic component from Biophytum sensitivum, on cell cycling and apoptosis of B16F-10 melanoma cells. J. Environ. Pathol. Toxicol. Oncol. 2011, 30, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Sul, J.Y.; Park, J.B.; Lee, M.S.; Cha, E.Y.; Song, I.S.; Kim, J.R.; Chang, E.S. Fatty acid synthase inhibition by amentoflavone suppresses HER2/neu (erbB2) oncogene in SKBR3 human breast cancer cells. Phytother. Res. 2013, 27, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lee, M.S.; Oh, W.K.; Sul, J.Y. Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breastcancer cells. Biol. Pharm. Bull. 2009, 32, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Na, Y.; Park, N.H.; Kim, H.S.; Ahn, S.M.; Kim, J.W.; Kim, H.K.; Jang, Y.P. Amentoflavone inhibits UVB-induced matrix metalloproteinase-1 expression through the modulation of AP-1 components in normal human fibroblasts. Appl. Biochem. Biotechnol. 2012, 166, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.K.; Su, C.F.; Zhang, L.; Gao, A.S.; Ke, Y.Y.; Yuan, P.P.; Wang, X.L.; Zhang, X.; Feng, W.S. Anti-diabetic activity of amentoflavone in Selaginella tamariscina in diabetic mice. Chin. J. Exp. Tradit. Med. Formuae 2013, 19, 198–202. [Google Scholar]
- Na, M.; Kim, K.A.; Oh, H.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitory activity of amentoflavone and its cellular effect on tyrosine phosphorylation of insulin receptors. Biol. Pharm. Bull. 2007, 30, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Wilsky, S.; Sobotta, K.; Wiesener, N.; Pilas, J.; Althof, N.; Munder, T.; Wutzler, P.; Henke, A. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Arch. Virol. 2012, 157, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Ishola, I.O.; Chatterjee, M.; Tota, S.; Tadigopulla, N.; Adeyemi, O.O.; Palit, G.; Shukla, R. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol. Biochem. Behav. 2012, 103, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Ishola, I.O.; Tota, S.; Adeyemi, O.O.; Agbaje, E.O.; Narender, T.; Shukla, R. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memoryimpairment in mice: A behavioral and biochemical study. Pharm. Biol. 2013, 51, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.J.; Hwang, L.; Lee, M.; Lee, K.Y.; Ahn, M.J.; Sung, S.H. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem. Toxicol. 2014, 64, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yin, M.H. Experiment study on vasodilative effects of amentoflavone ethyl acetate extract of Selaginella tamariscina. J. Med. Sci. Yanbian Univ. 2009, 32, 246–248. [Google Scholar]
- Zheng, X.K.; Ning, T.L.; Wang, X.L.; Liu, C.X.; Liu, Y.Y.; Feng, W.S. Effects of total flavonoids and amentoflavone isolated from Selaginella tamariscina on human umbilical vein endothelial cells proliferation and VEGF expression. Chin. Pharm. J. 2011, 998–1002. [Google Scholar]
- Saponara, R.; Bosisio, E. Inhibition of cAMP-phosphodiesterase by biflavones of Ginkgo biloba in rat adipose tissue. J. Nat. Prod. 1998, 61, 1386–1387. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Umegaki, K.; Tanaka, N.; Mizuno, H.; Nakamura, K.; Kunitomo, M.; Shinozuka, K. Safety of dietary supplements: Chronotropic and inotropic effects on isolated rat atria. Biol. Pharm. Bull. 2002, 25, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Sung, W.S.; Yeo, S.H.; Kim, H.S.; Lee, I.S.; Woo, E.R.; Lee, D.G. Antifungal effect of amentoflavone derived from Selaginella tamariscina. Arch. Pharm. Res. 2006, 29, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Park, K.; Lee, I.S.; Kim, H.S.; Yeo, S.H.; Woo, E.R.; Lee, D.G. S-phase accumulation of Candida albicans by anticandidal effect of amentoflavone isolated from Selaginella tamariscina. Biol. Pharm. Bull. 2007, 30, 1969–1971. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.M.; Kang, W.Y. Lowering blood lipid and hepatoprotective activity of amentoflavone from Selaginella tamariscina in vivo. J. Med. Plants Res. 2011, 5, 3007–3014. [Google Scholar]
- Zhang, J.; Liu, Z.; Cao, W.; Chen, L.; Xiong, X.; Qin, S.; Zhang, Z.; Li, X.; Hu, C.A. Amentoflavone inhibits angiogenesis of endothelial cells and stimulates apoptosis in hypertrophic scar fibroblasts. Burns 2014, 40, 922–929. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Li, Z.; Dong, Y.; Ren, J.; Huo, J. Amentoflavone protects against psoriasis-like skin lesion through suppression of NF-κB-mediated inflammation and keratinocyte proliferation. Mol. Cell Biochem. 2016, 413, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, K.M.; Guruvayoorappan, C. Amentoflavone inhibits iNOS, COX-2 expression and modulates cytokine profile, NF-κB signal transduction pathways in rats with ulcerative colitis. Int. Immunopharmacol. 2013, 17, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.; Xu, Z.; Liu, Y.; Xu, L.; Huang, H.; Zhang, J.; Cui, L.; Zhou, C.; Xu, D. Amentoflavone enhances osteogenesis of human mesenchymal stem cells through JNK and p38 MAPK pathways. J. Nat. Med. 2016, 70, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Jiang, E.J.; Wen, S.Y.; Lu, D.D. Amentoflavone acts as a radioprotector for irradiated v79 cells by regulating reactive oxygen species(ROS), cell cycle and mitochondrial mass. Asian Pac. J. Cancer Prev. 2014, 15, 7521–7526. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Ren, Q.; Yang, C.; Zhang, T.; Li, J.; Wang, X.; Qu, X.; Zhang, X.; Zhou, Z.; Zhang, Z.; et al. Liquid chromatography-tandem mass spectrometry determination and pharmacokinetic analysis of amentoflavone and its conjugated metabolites in rats. J. Agric. Food Chem. 2015, 63, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Gu, L.; Lv, C.; He, B.; Liu, Z.; Hou, P.; Bi, K.; Chen, X. Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC–MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 953–954, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, P.D.; Zhang, L.; Ding, A.W. HPLC fingerprint of Shixiao San. Chin. J. Exp. Tradit. Med. Formuae 2013, 19, 73–76. [Google Scholar]
- Dai, Z.; Wang, G.L.; Ma, S.C.; Lu, J.; Lin, R.C. Determination f 3 biflavonoids in Selaginellae plants by micellar electrokinetic capillary electrophoresis. Chin. J. Pharm. Anal. 2006, 26, 1408–1412. [Google Scholar]
- Liu, H.Q.; Lin, R.C.; Feng, F.; Dang, H.Q. Determination of biflavones from Selaginella by HPLC. Chin. J. Pharm. Anal. 2002, 22, 392–395. [Google Scholar]
No. | Plant | Family | Part | References |
---|---|---|---|---|
1 | Amanoa almerindae | Phyllanthaceae | aerial parts | [11] |
2 | Alchornea glandulosa | Euphorbiaceae | leaves | [12] |
3 | Alchornea triplinervia | Euphorbiaceae | leaves | [13] |
4 | Aletris spicata | Liliaceae | herbs | [14] |
5 | Allanblackia monticola | Guttiferae | leaves | [15] |
6 | Androsace umbellata | Primulaceae | whole plants | [16] |
7 | Antidesma bunius | Phyllanthaceae | leaves | [17] |
8 | Antidesma laciniatum | Euphorbiaceae | leaves | [18] |
9 | Biophytum sensitivum | Oxalidaceae | roots | [19] |
10 | Biota semipervirens | Cupressaceae | leaves | [20] |
11 | Byrsonima crassa | Malpighiaceae | leaves | [21] |
12 | Byrsonima intermedia | Malpighiaceae | leaves | [22] |
13 | Caesalpinia pyramidalis | Leguminosae | leaves | [23] |
14 | Callitris rhomboidea | Cupressaceae | leaves | [24] |
15 | Calocedrus microlepic var. formosana formosana | Cupressaceae | leaves | [25] |
16 | Calophyllum brasiliense | Calophyllaceae | leaves | [26] |
17 | Calophyllum ferrugineum | Calophyllaceae | barks, leaves | [27] |
18 | Calophyllum flavoramulum | Calophyllaceae | leaves | [28] |
19 | Calophyllum incrassatum | Calophyllaceae | barks, leaves | [29] |
20 | Calophyllum inophylloide | Calophyllaceae | heartwood | [30] |
21 | Calophyllum inophyllum | Calophyllaceae | leaves | [31] |
22 | Calophyllum membranaceum | Guttiferae | roots | [32] |
leaves | [33] | |||
23 | Calophyllum pinetorum | Guttiferae | stem barks, leaves | [34] |
24 | Calophyllum rivulare | Calophyllaceae | leaves | [35] |
25 | Calophyllum symingtonianum | Calophyllaceae | barks, leaves | [36] |
26 | Calophyllum venulosum | Calophyllaceae | leaves | [37] |
27 | Campylospermum calanthum | Ochnaceae | leaves | [38] |
28 | Campylospermum mannii | Ochnaceae | leaves | [39] |
29 | Canarium album | Burseraceae | fruits | [40] |
leaves | [41] | |||
30 | Canarium pimela | Burseraceae | fruits | [42] |
31 | Canarium schweinfurthii | Burseraceae | seeds | [43] |
32 | Casearia clarkei | Flacourtiaceae | leaves | [44] |
33 | Celaenodendron mexicanum | Euphorbiaceae | leaves, twigs | [45] |
34 | Cephalotaxus fortunei | Cephalotaxaceae | leaves | [46] |
35 | Cephalotaxus koreana | Cephalotaxaceae | leaves, twigs | [47] |
36 | Cephalotaxus oliveri | Cephalotaxaceae | leaves | [48] |
37 | Chamaecyparis obtusa | Cupressaceae | leaves | [49] |
38 | Chrozophora tinctoria | Euphorbiaceae | aerial parts | [3] |
39 | Cnestis ferruginea | Connaraceae | roots | [50] |
40 | Cunninghamia lanceolata | Taxodiaceae | branches, leaves | [51] |
41 | Cupressocyparis leylandii | Cupressaceae | leaves | [52] |
42 | Cupressus chengiana | Cupressaceae | - | [53] |
43 | Cupressus sempervirens | Cupressaceae | leaves | [54] |
44 | Cycas beddomei | Cycadaceae | cones | [55] |
45 | Cycas circinalis | Cycadaceae | leaflets | [56] |
46 | Cycas panzhihuaensis | Cycadaceae | flowers | [57] |
47 | Cycas pectinata | Cycadaceae | fruits | [58] |
48 | Cycas revoluta | Cycadaceae | leaflets | [56] |
49 | Dacrydium araucarioides | Podocarpaceae | leaves | [6] |
50 | Decussocarpus rospigliosii | Podocarpaceae | leaves | [59] |
51 | Discocleidion rufescens | Euphorbiaceae | aerial parts | [60] |
52 | Dorstenia barteri | Moraceae | twigs | [61] |
53 | Drypetes gerrardii | Euphorbiaceae | stems | [62] |
54 | Drypetes hainanensis | Euphorbiaceae | leaves, stems | [63] |
55 | Elateriospermum tapos | Euphorbiaceae | stems, leaves | [64] |
56 | Galeobdolon chinense | Labiatae | whole plants | [65] |
57 | Garcinia bakeriana | Clusiaceae | leaves | [66] |
58 | Garcinia brasiliensis | Clusiaceae | branches, leaves | [2] |
59 | Garcinia brevipedicellata | Clusiaceae | stem heartwood | [67] |
60 | Garcinia cowa | Clusiaceae | fruits | [68] |
61 | Garcinia intermedia | Clusiaceae | leaves | [69] |
62 | Garcinia livingstonei | Clusiaceae | leaves | [70] |
fruits | [71] | |||
63 | Garcinia merguensis | Clusiaceae | twigs | [72] |
64 | Garcinia subelliptica | Clusiaceae | leaves | [73] |
65 | Garcinia xanthochymus | Clusiaceae | fruits | [74] |
66 | Gingko biloba | Ginkgoaceae | leaves | [75] |
67 | Hypericum connatum | Hypericaceae | aerial parts | [76] |
68 | Hypericum perforatum | Hypericaceae | aerial parts | [77] |
69 | Hyeronima alchorneoides | Euphorbiaceae | leaves | [78] |
70 | Juniperus occidentalis | Cupressaceae | leaves | [79] |
71 | Juniperus rigida | Cupressaceae | leaves, twigs | [80] |
72 | Lanaria lanata | Lanariaceae | whole plants | [81] |
73 | Lobelia chinensis | Campanulaceae | whole plants | [82] |
74 | Lonicera chrysantha | Caprifoliaceae | aerial parts | [83] |
75 | Lonicera macranthoides | Caprifoliaceae | stems, leaves | [84] |
76 | Lonicera similes | Caprifoliaceae | flower buds | [85] |
77 | Luxemburgia nobilis | Ochnaceae | branches, leaves | [86] |
78 | Lysimachia christinae | Primulaceae | whole plants | [87] |
79 | Mangifera indica | Anacardiaceae | leaves | [88] |
80 | Manihot esculenta | Euphorbiaceae | stems | [89] |
81 | Microbiota decussata | Cupressaceae | leaves | [90] |
82 | Nandina domestica | Berberidaceae | fruits | [91] |
83 | Nanuza plicata | Velloziaceae | leaves | [92] |
84 | Ochna schweinfurthiana | Ochnaceae | barks | [5] |
85 | Ouratea parviflora | Ochnaceae | leaves | [93] |
86 | Ouratea semiserrata | Ochnaceae | branches, leaves | [94] |
87 | Ouratea sulcata | Ochnaceae | aerial parts | [95] |
88 | Pistacia chinensis | Anacardiaceae | buds, inflorescences | [96] |
89 | Podocarpus imbricadus | Podocarpaceae | barks, leaves | [97] |
90 | Polygala sibirica | Polygalaceae | aerial parts | [98] |
91 | Ranunculus ternatus | Ranunculaceae | root tubers | [99] |
92 | Retrophyllum rospigliosii | Podocarpaceae | leaves | [100] |
93 | Rhus pyroides | Anacardiaceae | leaves | [101] |
94 | Rhus succedanea | Anacardiaceae | leaves, twigs | [102] |
95 | Sabina pingii var. wilsonii | Cupressaceae | leaves, twigs | [103] |
96 | Sabina sinoalpina | Cupressaceae | - | [104] |
97 | Sabina vulgaris | Cupressaceae | leaves | [105] |
98 | Selaginella bryopteris | Selaginellaceae | whole plants | [106] |
99 | Selaginella chrysocaulos | Selaginellaceae | whole plants | [106] |
100 | Selaginella delicatula | Selaginellaceae | whole plants | [107] |
101 | Selaginella denticulata | Selaginellaceae | whole plants | [108] |
102 | Selaginella doederleinii | Selaginellaceae | whole plants | [109] |
103 | Selaginella involvens | Selaginellaceae | whole plants | [110] |
104 | Selaginella labordei | Selaginellaceae | whole plants | [111] |
105 | Selaginella moellendorffii | Selaginellaceae | whole plants | [112] |
106 | Selaginella nipponica | Selaginellaceae | leaves | [1] |
107 | Selaginella nothohybrida | Selaginellaceae | whole plants | [113] |
108 | Selaginella pachystachys | Selaginellaceae | leaves | [1] |
109 | Selaginella pulvinata | Selaginellaceae | - | [114] |
110 | Selaginella remotifolia | Selaginellaceae | - | [115] |
111 | Selaginella rupestris | Selaginellaceae | whole plants | [116] |
leaves | [117] | |||
112 | Selaginella sanquinolenta | Selaginellaceae | - | [118] |
113 | Selaginella selaginoides | Selaginellaceae | whole plants | [119] |
114 | Selaginella sinensis | Selaginellaceae | herbs | [120] |
115 | Selaginella stauntoniana | Selaginellaceae | whole plants | [121] |
116 | Selaginella tamariscina | Selaginellaceae | whole plants | [122] |
leaves | [1] | |||
117 | Selaginella uncinata | Selaginellaceae | herbs | [123] |
118 | Selaginella willdenowii | Selaginellaceae | leaves | [124] |
119 | Speranskia Tuberculata | Euphorbiaceae | aerial parts | [125] |
120 | Struthiola argentea | Thymelaeaceae | whole plants | [126] |
121 | Taxus baccata | Taxaceae | needles | [127] |
122 | Thuja orientalis | Cupressaceae | leaves | [128] |
fruits | [129] | |||
123 | Tmesipteris tannensis | Psilotaceae | - | [130] |
124 | Torreya nucifera | Taxaceae | leaves | [131] |
125 | Torreya yunnanensis | Taxaceae | leaves, twigs | [132] |
126 | Viburnum chinshanense | Caprifoliaceae | aerial parts | [133] |
127 | Zabelia tyaihyonii | Caprifoliaceae | leaves | [134] |
No. | Compounds | Sources |
---|---|---|
1 | Bilobetin | Celaenodendron mexicanum [45], Cephalotaxus koreana [47], Chamaecyparis obtusa [49], Cycas circinalis [56], Dacrydium araucarioides [6], Gingko biloba [140], Ranunculus ternatus [99], Selaginella bryopteris [106,141], Selaginella moellendorffii [142,143], Selaginella uncinata [137], Selaginella willdenowii [124], Taxus baccata [127], Torreya nucifera [131] |
2 | Podocarpusflavone A | Allanblackia monticola [15], Antidesma bunius [17], Caesalpinia pyramidalis [23], Celaenodendron mexicanum [144], Chamaecyparis obtusa [49], Cupressocyparis leylandii [52], Cycas panzhihuaensis [57], Cycas revoluta [56], Decussocarpus rospigliosii [59], Garcinia bakeriana [66], Garcinia brevipedicellata [67], Garcinia intermedia [69], Garcinia livingstonei [70], Garcinia subelliptica [73], Ouratea semiserrata [94], Podocarpus brevifolius [145], Ranunculus ternatus [99], Retrophyllum rospigliosii [100], Sabina pingii var. wilsonii [103], Sabina vulgaris [105], Selaginella moellendorffii [112,142], Taxus baccata [127] |
3 | sequoiaflavone | Amanoa almerindae [11], Amentotaxus yunnanensis [132], Androsace umbellata [16], Campylospermum calanthum [38], Chamaecyparis obtusa [49], Cupressocyparis leylandii [52], Dacrydium araucarioides [6], Decussocarpus rospigliosii [59], Elateriospermum tapos [146], Microbiota decussata [90], Selaginella bryopteris [106,141], Selaginella moellendorffii [142,143], Taxus baccata [127] |
4 | Sotetsuflavone | Amentotaxus yunnanensis [132], Dacrydium araucarioides [6], Dacrydium pierrei [147], Selaginella denticulata [108], Selaginella tamariscina [148], Torreya yunnanensis [132] |
5 | Ginkgetin | Celaenodendron mexicanum [45], Cephalotaxus koreana [47], Chamaecyparis obtusa [49], Dacrydium araucarioides [6], Elateriospermum tapos [146], Selaginella doederleinii [149], Selaginella moellendorffii [112,142,143], Selaginella remotifolia [115], Selaginella stauntoniana [121], Taxus baccata [127], Taxus madia [150], Torreya nucifera [131] |
6 | Isoginkgetin | Chamaecyparis obtusa [49], Cycas circinalis [56], Gingko biloba [137], Podocarpus brevifolius [144], Podocarpus henkelii [151], Ranunculus ternatus [99], Selaginella doederleinii [149] |
7 | Podocarpusflavone B | Amanoa almerindae [11], Campylospermum calanthum [38], Celaenodendron mexicanum [144], Chamaecyparis obtusa [49], Decussocarpus rospigliosii [59], Elateriospermum tapos [146], Podocarpus brevifolius [145] |
8 | 4′,7′′-di-O-methylamentoflavone | Cephalotaxus koreana [47], Selaginella remotifolia [115], Selaginella sinensis [120], Selaginella willdenowii [124] |
9 | 7,7′′-di-O-methylamentoflavone | Amentotaxus yunnanensis [132], Chamaecyparis obtusa [49], Decussocarpus rospigliosii [59], Podocarpus imbricadus [97], Retrophyllum rospigliosii [100], Selaginella doederleinii [109] |
10 | Heveaflavone | Decussocarpus rospigliosii [59], Podocarpus imbricadus [97], Selaginella bryopteris [106,138], Selaginella doederleinii [109], Selaginella tamariscina [148] |
11 | kayaflavone | Ranunculus ternatus [99], Selaginella moellendorffii [112] |
12 | Sciadopitysin | Cephalotaxus fortunei [46], Cephalotaxus koreana [47], Cephalotaxus oliveri [48], Chamaecyparis obtusa [49], Cunninghamia lanceolata [51], Dacrydium araucarioides [6], Gingko biloba [140], Podocarpus brevifolius [145], Podocarpus nagi [152], Retrophyllum rospigliosii [100], Taxus baccata [127], Taxus madia [150], Torreya nucifera [131], Torreya yunnanensis [132] |
13 | 7,4′,7′′-tri-O-methylamentoflavone | Retrophyllum rospigliosii [100], Taxus baccata [153], Taxus madia [150] |
14 | 7,4′,7′′,4′′′-tetra-O-methylamentoflavone | Cephalotaxus koreana [47], Cephalotaxus fortunei [46], Dacrydium pierrei [146], Podocarpus brevifolius [145], Podocarpus henkelii [151], Podocarpus nagi [152], Retrophyllum rospigliosii [100], Selaginella denticulata [108], Selaginella doederleinii [109,138,149], Selaginella moellendorffii [112], Taxus baccata [153], Wollemia nobilis [154] |
15 | 7,4′,5′′,7′′,4′′′-penta-O-methylamentoflavone | Cephalotaxus oliveri [48] |
16 | 3′′′-O-methylamentoflavone | Lonicera macranthoides [84] |
17 | 6"-(2-hydroxy-3-methyl-3-butenyl)-amentoflavone | Calophyllum venulosum [37], Garcinia bakeriana [66] |
18 | 6"-(3-methyl-2-butenyl)-amentoflavone | Calophyllum venulosum [37] |
19 | Garciniaflavone A | Garcinia subelliptica [73] |
20 | Garciniaflavone B | Garcinia subelliptica [73] |
21 | Garciniaflavone C | Garcinia subelliptica [73] |
22 | Garciniaflavone D | Garcinia subelliptica [73] |
23 | 3′,8′′-biisokaempferide | Nanuza plicata [92] |
24 | 5'- hydroxyamentoflavone | Caesalpinia pyramidalis [23] |
25 | Sumaflavone | Selaginella tamariscina [155,156] |
26 | Pyranoamentoflavone | Calophyllum inophylloide [30], Calophyllum venulosum [37] |
27 | 7,4′-di-O-methylpyranoamentoflavone | Calophyllum venulosum [37] |
28 | 7,4′′′-di-O-methylpyranoamentoflavone | Calophyllum venulosum [37] |
29 | Amentoflavone-7,4′,4′′′-tri-O-β-d-glucopyranoside | Psilotum nudum [157] |
30 | Amentoflavone-4′,4′′′-di-O-β-d-glucopyranoside | Psilotum nudum [157] |
31 | Amentoflavone-7,4′′′-di-O-β-d-glucopyranoside | Psilotum nudum [157] |
32 | Taiwanhomoflavone A | Cephalotaxus wilsoniana [158] |
No. | Compounds | Sources |
---|---|---|
33 | (2S)-2,3-dihydro-7-O-β-d-glucopyranosylamentoflavone | Cycas revoluta [159] |
34 | (2S)-2,3-dihydro-7,7′′-di-O-β-d-glucopyranosylamentoflavone | Cycas revoluta [159] |
35 | (2′′S)-2′′,3′′-dihydro-4′-O-methylamentoflavone | Selaginella remotifolia [115], Selaginella uncinata [123,160] |
36 | (2S)-2,3-dihydro-4′-O-methylamentoflavone | Cycas circinalis [56], Selaginella remotifolia [115], Selaginella uncinata [123,137] |
37 | (2S,2′′S)-2,3,2′′,3′′-tetrahydro-4′-O-methylamentoflavone | Cycas circinalis [56]; Selaginella uncinata [123] |
38 | (2S,2′′S)-2,3,2′′,3′′-tetrahydroamentoflavone | Cycas beddomei [55,161], Cycas revolute [56], Dysoxylum cauliflorum [162], Selaginella bryopteris [106,141], Selaginella uncinata [123] |
39 | (2S)-2,3-dihydroamentoflavone | Calophyllum venulosum [37], Cycas beddomei [55,161], Cycas pectinata [58], Cycas revoluta [56], Selaginella bryopteris [106,141], Selaginella mollendorfii [142], Selaginella remotifolia [115], Selaginella tamariscina [163], Selaginella uncinata [123,137] |
40 | (2′′S)-2′′,3′′-dihydroamentoflavone | Selaginella bryopteris [106,141], Selaginella remotifolia [115], Selaginella tamariscina [163], Selaginella uncinata [123] |
41 | (2S,2′′S)-2,3,2′′,3′′-tetrahydroisoginkgetin | Cycas circinalis [56] |
42 | (2S)-2,3-dihydro-4′,4′′′-di-O-methylamentoflavone | Cycas circinalis [56] |
43 | (2S)-2,3-dihydro-4′′′-O-methylamentoflavone | Selaginella remotifolia [115] |
44 | (2S)-2,3-dihydro-7,7′′-di-O-methylamentoflavone | Amentotaxus yunnanensis [132] |
45 | (2S)-2,3-dihydro-4′′′-O-methylamentoflavone | Cycas beddomei [55,161] |
Function | Inducer | Model | Efficacy Evaluation | Reference |
---|---|---|---|---|
Anti-hyperlipidemia | High-cholesterol diet | Male Kunming mice | Decreased TG, TC, LDL-C in serum Increased HDL-C | [184] |
Anti-hypertrophic scar | - | HSFBs | Inhibited cell viability, induced apoptosis Regulated Bax, TCTP, caspase-3, caspase-8, caspase-9 | [185] |
- | SVECs | Inhibited cell viability Inhibited migration, invasion, tubular structure formation | ||
Anti-psoriasis | Imiquimod | Male BALBc Mice | Reduced skinfold thickening Improved erythema and scaling scores, histological lesions Suppressed increases of TNF-α, IL-17A, IL-22, IL-23 | [186] |
M5 cocktail * | Human keratinocytes | Inhibited cell proliferation, promoted apoptosis Decreased overexpression of cyclin D1, cyclin E, IL-17A, IL-22 Inhibited the up-regulation of p65 NF-κB | ||
Anti-ulcerative colitis | Acetic acid | Male Wistar rats | Decreased mucosal injury score, vascular permeability Diminished LDH and MPO activity Increased GSH, SOD; decreased LPO, NO Reduced the colonic TNF-α, IL-1β, IL-6 Inhibited expression of iNOS and COX-2 Inhibited activation and translocation of NF-κB (p65/p50) | [187] |
Hepatoprotection | CCl4 | Male Kunming mice | Decreased GOT, GPT, hepatic MDA Increased hepatic SOD | [184] |
Osteogenesis effect | - | Human mesenchymal stem cells | Enhanced proliferation, ALP activity, mineralization Upregulated expression of RUNX2, osterix proteins Increased the levels of phosphorylated JNK and p-p38 | [188] |
Radioprotection | Co-60 irradiation | V79 Chinese hamster lung fibroblast cells | Inhibited apoptosis, promoted the G2 phase Decreased the concentration of ROS and mitochondrial mass | [189] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Yan, H.; Zhang, L.; Shan, M.; Chen, P.; Ding, A.; Li, S.F.Y. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules 2017, 22, 299. https://doi.org/10.3390/molecules22020299
Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules. 2017; 22(2):299. https://doi.org/10.3390/molecules22020299
Chicago/Turabian StyleYu, Sheng, Hui Yan, Li Zhang, Mingqiu Shan, Peidong Chen, Anwei Ding, and Sam Fong Yau Li. 2017. "A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid" Molecules 22, no. 2: 299. https://doi.org/10.3390/molecules22020299
APA StyleYu, S., Yan, H., Zhang, L., Shan, M., Chen, P., Ding, A., & Li, S. F. Y. (2017). A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules, 22(2), 299. https://doi.org/10.3390/molecules22020299