The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats
Abstract
1. Background
Search Methodology
2. Liposomes
3. Liposomes for Immunotherapy and Gene Delivery
4. Polymer-Based Nanoparticles
5. Nanocrystals
6. Gold Nanoparticles
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Au-GSH-Dox | doxorubicin conjugated to glutathione-stabilized gold nanoparticles |
Au-NPs AVMA | gold nanoparticles American Veterinary Medical Association |
BSA | bovine serum albumin |
DDS | drug delivery system |
DFS | disease free survival |
FDA | Food and Drug Administration |
FISS | feline injection-site sarcoma |
HA | polysaccharide hyaluronan |
HA-Pt | cisplatin polysaccharide hyaluronan |
IL-2 | interleukin 2 |
IL-12 | interleukin 12 |
IV | intravenous |
LC | liposomal clodronate |
LDC | liposome-DNA complexes |
LLD | low sensitive liposome doxorubicin |
L-MTP-PE | Liposomal Muramide-Tripeptide-phosphatidylethanolamine |
L-VCR | liposome encapsulated vincristine |
MDR | multi drug resistance |
MFI | metastasis free interval |
OS | overall survival |
OSA | osteosarcoma |
PEG | polyethylene glycol |
P-gp | P-glycoprotein |
PLGA | poly (lactic-co-glycolic acid) |
PPPS | palmar-plantar erythrodysesthesia |
RES | reticulo-endothelial system |
ST | survival time |
TAM | tumour associated macrophages |
References
- Biller, B.; Berg, J.; Garrett, L.; Ruslander, D.; Wearing, R.; Abbott, B.; Patel, M.; Smith, D.; Bryan, C. AAHA oncology guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2016, 52, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.W.; Ostrander, E.A. Domestic dogs and cancer research: A breed-based genomics approach. ILAR J. 2014, 55, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Zabielska-Koczywas, K.; Wojtalewicz, A.; Lechowski, R. Current knowledge on feline injection-site sarcoma treatment. Acta Vet. Scand. 2017, 59, 47. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2011, 12, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002, 54, 631–651. [Google Scholar] [CrossRef]
- Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Mealey, K.L.; Fidel, J.P. Glycoprotein mediated drug interactions in animals and humans with cancer. J. Vet. Intern. Med. 2015, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Liang, X.J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin. J. Cancer 2012, 31, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Susa, M.; Iyer, A.K.; Ryu, K.; Hornicek, F.J.; Mankin, H.; Amiji, M.M.; Duan, Z. Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer 2009, 9, 399. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.J.; Cheng, J.; Man, C.W.Y.; Wong, W.T.; Cheng, S.H. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Liu, J.; He, Q.; Wang, L.; Shi, J. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials 2013, 34, 2719–2730. [Google Scholar] [CrossRef] [PubMed]
- Aniola, J.; Selman, S.H.; Lilge, L.; Keck, R.; Jankun, J. Spatial distribution of liposome encapsulated tin etiopurpurin dichloride (SnET2) in the canine prostate: Implications for computer simulation of photodynamic therapy. Int. J. Mol. Med. 2003, 11, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Fenger, J.M.; London, C.A.; Kisseberth, W.C. Canine osteosarcoma: A naturally occurring disease to inform pediatric oncology. ILAR J. 2014, 55, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Mueller, F.; Fuchs, B.; Kaser-Hotz, B. Comparative biology of human and canine osteosarcoma. Anticancer Res. 2007, 27, 155–164. [Google Scholar] [PubMed]
- Paoloni, M.; Khanna, C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer 2008, 8, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Teske, E.; Rutteman, G.R.; Kirpenstein, J.; Hirschberger, J. A randomized controlled study into the efficacy and toxicity of pegylated liposome encapsulated doxorubicin as an adjuvant therapy in dogs with splenic haemangiosarcoma. Vet. Comp. Oncol. 2011, 9, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Vail, D.M.; Kravis, L.D.; Cooley, A.J.; Chun, R.; MacEwen, E.G. Preclinical trial of doxorubicin entrapped in sterically stabilized liposomes in dogs with spontaneously arising malignant tumors. Cancer Chemother. Pharmacol. 1997, 39, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Hauck, M.L.; La Rue, S.M.; Petros, W.P.; Poulson, J.M.; Yu, D.; Spasojevic, I.; Pruitt, A.F.; Klein, A.; Case, B.; Thrall, D.E.; et al. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin. Cancer Res. 2006, 12, 4004–4010. [Google Scholar] [CrossRef] [PubMed]
- Kleiter, M.; Tichy, A.; Willmann, M.; Pagitz, M.; Wolfesberger, B. Concomitant liposomal doxorubicin and daily palliative radiotherapy in advanced feline soft tissue sarcomas. Vet. Radiol. Ultrasound 2010, 51, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rafiyath, S.M.; Rasul, M.; Lee, B.; Wei, G.; Lamba, G.; Liu, D. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: A meta-analysis. Exp. Hematol. Oncol. 2012, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Sorenmo, K.; Samluk, M.; Clifford, C.; Baez, J.; Barrett, J.S.; Poppenga, R.; Overley, B.; Skorupski, K.; Oberthaler, K.; Van Winkle, T.; et al. Clinical and pharmacokinetic characteristics of intracavitary administration of pegylated liposomal encapsulated doxorubicin in dogs with splenic hemangiosarcoma. J. Vet. Intern. Med. 2007, 21, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Kisseberth, W.C.; Macewen, E.G.; Helfand, S.C.; Vail, D.M.; London, C.A.; Keller, E.T. Response to liposome-encapsulated doxorubicin (TLC D-99) in a dog with myeloma. J. Vet. Intern. Med. 1995, 9, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Kanter, P.M.; Bullard, G.A.; Ginsberg, R.A.; Pilkiewicz, F.G.; Mayer, L.D.; Cullis, P.R.; Pavelic, Z.P. Comparison of the cardiotoxic effects of liposomal doxorubicin (TLC D-99) versus free doxorubicin in beagle dogs. In Vivo 1993, 7, 17–26. [Google Scholar] [PubMed]
- Kanter, P.M.; Klaich, G.; Bullard, G.A.; King, J.M.; Pavelic, Z.P. Preclinical toxicology study of liposome encapsulated doxorubicin (TLC D-99) given intraperitoneally to dogs. In Vivo 1994, 8, 975–982. [Google Scholar] [PubMed]
- Kanter, P.M.; Bullard, G.A.; Pilkiewicz, F.G.; Mayer, L.D.; Cullis, P.R.; Pavelic, Z.P. Preclinical toxicology study of liposome encapsulated doxorubicin (TLC D-99): Comparison with doxorubicin and empty liposomes in mice and dogs. In Vivo 1993, 7, 85–95. [Google Scholar] [PubMed]
- Vail, D.M.; Kurzman, I.D.; Glawe, P.C.; O’Brien, M.G.; Chun, R.; Garrett, L.D.; Obradovich, J.E.; Fred, R.M.; Khanna, C.; Colbern, G.T.; et al. STEALTH liposome-encapsulated cisplatin (SPI-77) versus carboplatin as adjuvant therapy for spontaneously arising osteosarcoma (OSA) in the dog: A randomized multicenter clinical trial. Cancer Chemother. Pharmacol. 2002, 50, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Mao, W.; Shi, R.; Jiang, P.; Wang, Q.; Zhu, R.; Wang, T.; Ma, Y. Pharmacokinetics of liposomal-encapsulated and un-encapsulated vincristine after injection of liposomal vincristine sulfate in beagle dogs. Cancer Chemother. Pharmacol. 2014, 73, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ye, Y.; Li, J.; Wei, Y.M. Preparation and the in-vivo evaluation of paclitaxel liposomes for lung targeting delivery in dogs. J. Pharm. Pharmacol. 2011, 63, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Harisa, G.I.; Alanazi, F.K. Low density lipoprotein bionanoparticles: From cholesterol transport to delivery of anti-cancer drugs. Saudi Pharm. J. 2014, 22, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S.R.R.; Maranhão, R.C.; Guerra, J.L.; Coelho, B.M.P.; Barboza, R.; Pozzi, D.H.B. Pilot clinical study of carmustine associated with a lipid nanoemulsion in combination with vincristine and prednisone for the treatment of canine lymphoma. Vet. Comp. Oncol. 2015, 13, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Zeisberger, S.M.; Odermatt, B.; Marty, C.; Zehnder-Fjällman, A.H.M.; Ballmer-Hofer, K.; Schwendener, R.A. Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach. Br. J. Cancer 2006, 95, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Hafeman, S.; London, C.; Elmslie, R.; Dow, S. Evaluation of liposomal clodronate for treatment of malignant histiocytosis in dogs. Cancer Immunol. Immunother. 2010, 59, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Vail, D.M.; MacEwen, E.G.; Kurzman, I.D.; Dubielzig, R.R.; Helfand, S.C.; Kisseberth, W.C.; London, C.A.; Obradovich, J.E.; Madewell, B.R.; Rodriguez, C.O. Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: A randomized multi-institutional clinical trial. Clin. Cancer Res. 1995, 1, 1165–1170. [Google Scholar] [PubMed]
- MacEwen, E.G.; Kurzman, I.D.; Rosenthal, R.C.; Smith, B.W.; Manley, P.A.; Roush, J.K.; Howard, P.E. Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J. Natl. Cancer Inst. 1989, 81, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Kurzman, I.D.; MacEwen, E.G.; Rosenthal, R.C.; Fox, L.E.; Keller, E.T.; Helfand, S.C.; Vail, D.M.; Dubielzig, R.R.; Madewell, B.R.; Rodriguez, C.O.; et al. Adjuvant therapy for osteosarcoma in dogs: Results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clin. Cancer Res. 1995, 1, 1595–1601. [Google Scholar] [PubMed]
- Meyers, P.A.; Schwartz, C.L.; Krailo, M.D.; Healey, J.H.; Bernstein, M.L.; Betcher, D.; Ferguson, W.S.; Gebhardt, M.C.; Goorin, A.M.; Harris, M.; et al. Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival—A report from the Children’s Oncology Group. J. Clin. Oncol. 2008, 26, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.J.; Kleinerman, E.S.; Krailo, M.D.; Betcher, D.L.; Healey, J.H.; Iii, E.U.C.; Michael, L.; Weiner, M.A.; Wells, R.J.; Womer, R.B. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: A report from the Children’s Oncology Group. Cancer 2009, 115, 5339–5348. [Google Scholar] [CrossRef] [PubMed]
- Meyers, P.A. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev. Anticancer Ther. 2009, 9, 1035–1049. [Google Scholar] [CrossRef] [PubMed]
- Macewen, E.G.; Kurzman, I.D.; Vail, D.M.; Dubielzig, R.R.; Everlith, K.; Madewell, B.R.; Rodriguez, C.O.; Phillips, B.; Zwahlen, C.H.; Obradovich, J.; et al. Adjuvant therapy for melanoma in dogs: Results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor 1. Clin. Cancer Res. 1999, 5, 4249–4258. [Google Scholar] [PubMed]
- Fox, L.E.; MacEwen, E.G.; Kurzman, I.D.; Dubielzig, R.R.; Helfand, S.C.; Vail, D.M.; Kisseberth, W.; London, C.; Madewell, B.R.; Rodriguez, C.O. Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine for the treatment of feline mammary adenocarcinoma—A multicenter randomized double-blind study. Cancer Biother. 1995, 10, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Queiroga, F.L.; Raposo, T.; Carvalho, M.I.; Prada, J.; Pires, I. Canine mammary tumours as a model to study human breast cancer: Most recent findings. In Vivo 2011, 25, 455–465. [Google Scholar] [PubMed]
- Rivera, P.; von Euler, H. Molecular biological aspects on canine and human mammary tumors. Vet. Pathol. 2011, 48, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Uva, P.; Aurisicchio, L.; Watters, J.; Loboda, A.; Kulkarni, A.; Castle, J.; Palombo, F.; Viti, V.; Mesiti, G.; Zappulli, V.; et al. Comparative expression pathway analysis of human and canine mammary tumors. BMC Genom. 2009, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Yang, J.C.; Topalian, S.L.; Schwartzentruber, D.J.; Weber, J.S.; Parkinson, D.R.; Seipp, C.A.; Einhorn, J.H.; White, D.E. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using. J. Am. Med. Assoc. 1994, 271, 907–913. [Google Scholar] [CrossRef]
- Khanna, C.; Anderson, P.M.; Hasz, D.E.; Katsanis, E.; Neville, M.; Klausner, J.S. Interleukin-2 liposome inhalation therapy is safe and effective for dogs with spontaneous pulmonary metastases. Cancer 1997, 79, 1409–1421. [Google Scholar] [CrossRef]
- Khanna, C.; Hasz, D.E.; Klausner, J.S.; Anderson, P.M. Aerosol biologically delivery of interleukin canine studies ’ is nontoxic and effective. Clin. Cancer Res. 1996, 2, 721–734. [Google Scholar] [PubMed]
- Dow, S.; Elmslie, R.; Kurzman, I.; MacEwen, G.; Pericle, F.; Liggitt, D. Phase I study of liposome-DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum. Gene Ther. 2005, 16, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Kamstock, D.; Guth, A.; Elmslie, R.; Kurzman, I.; Liggitt, D.; Coro, L.; Fairman, J.; Dow, S. Liposome–DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma. Cancer Gene Ther. 2006, 13, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Xie, Y.; Davies, N.M.; Cohen, M.S.; Forrest, M.L. Pharmacokinetics and disposition of a localized lymphatic polymeric hyaluronan conjugate of cisplatin in rodents. J. Pharm. Sci. 2010, 99, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- Venable, R.O.; Worley, D.R.; Gustafson, D.L.; Ryan, J.; Iii, E.J.E.; Cai, S.; Cohen, M.S.; Forrest, L. Effects of intratumoral administration of a hyaluronan-cisplatin nanoconjugate to five dogs with soft tissue sarcomas. Am. J. Vet. Res. 2013, 73, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhang, T.; Forrest, W.C.; Yang, Q.; Groer, C.; Mohr, E.; Aires, D.J.; Axiak-Bechtel, S.M.; Flesner, B.K.; Henry, C.J.; et al. Phase I-II clinical trial of hyaluronan-cisplatin nanoconjugate in dogs with naturally occurring malignant tumors. Am. J. Vet. Res. 2016, 77, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Marrache, S.; Dhar, S.; Siekkinen, A.R.; Mclellan, J.M.; Chen, J.; Xia, Y.; Zheng, K.; Wang, C.; Cheng, Y.; Yue, Y.; et al. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012, 109, 16288–16293. [Google Scholar] [CrossRef] [PubMed]
- Marrache, S.; Pathak, R.K.; Dhar, S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc. Natl. Acad. Sci. USA 2014, 111, 10444–10449. [Google Scholar] [CrossRef] [PubMed]
- Feldhaeusser, B.; Platt, S.R.; Marrache, S.; Kolishetti, N.; Pathak, R.K.; Montgomery, D.J.; Reno, L.R.; Howerth, E.; Dhar, S. Evaluation of nanoparticle delivered cisplatin in beagles. Nanoscale 2015, 7, 13822–13830. [Google Scholar] [CrossRef] [PubMed]
- Axiak, S.M.; Selting, K.A.; Decedue, C.J.; Henry, C.J.; Tate, D.; Howell, J.; Bilof, K.J.; Kim, D.Y. Phase I dose escalation safety study of nanoparticulate paclitaxel (CTI 52010) in normal dogs. Int. J. Nanomed. 2011, 6, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Axiak-Bechtel, S.M.; Kumar, S.R.; Dank, K.K.; Clarkson, N.A.; Selting, K.A.; Bryan, J.N.; Rosol, T.J.; Espinosa, J.; Decedue, C.J. Nanoparticulate paclitaxel demonstrates antitumor activity in PC3 and Ace-1 aggressive prostate cancer cell lines. Investig. New Drugs 2013, 31, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Stolik, S.; Delgado, J.A.; Pérez, A.; Anasagasti, L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J. Photochem. Photobiol. B Biol. 2000, 57, 90–93. [Google Scholar] [CrossRef]
- Tomuleasa, C.; Soritau, O.; Orza, A.; Dudea, M.; Petrushev, B.; Mosteanu, O.; Susman, S.; Florea, A.; Pall, E.; Aldea, M.; et al. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J. Gastrointest. Liver Dis. 2012, 21, 187–196. [Google Scholar]
- Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004, 11, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Teodoro, J.G.; Nadeau, J.L. Intratumoral gold-doxorubicin is effective in treating melanoma in mice. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Lewandowski, W.; Król, M.; Pawłowski, K.; Mieczkowski, J.; Lechowski, R.; Zabielska, K. Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles - In vitro studies on Feline fibrosarcoma cell lines. PLoS ONE 2015, 10, e0124955. [Google Scholar] [CrossRef] [PubMed]
- Zabielska-Koczywas, K.; Dolka, I.; Król, M.; Żbikowski, A.; Lewandowski, W.; Mieczkowski, J. Doxorubicin conjugated to glutathione stabilized gold nanoparticles (Au-GSH-Dox) as an effective therapeutic agent for feline injection-site sarcomas—Chick embryo chorioallantoic membrane study. Molecules 2017, 22, E253. [Google Scholar] [CrossRef] [PubMed]
- Raposo, L.R.; Roma-Rodrigues, C.; Jesus, J.; Martins, L.M.D.R.S.; Pombeiro, A.J.; Baptista, P.V.; Fernandes, A.R. Targeting canine mammary tumours via gold nanoparticles functionalized with promising Co(II) and Zn(II) compounds. Vet. Comp. Oncol. 2017, 15, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Sena, E.S.; Bart van der Worp, H.; Bath, P.M.W.; Howells, D.W.; Macleod, M.R. Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biol. 2010, 8, e1000344. [Google Scholar] [CrossRef] [PubMed]
- American Veterinary Medical Association. AVMA Animal Health Studies Database. Available online: https://ebusiness.avma.org/aahsd/study_search.aspx (accessed on 15 August 2017).
DDS | Active Substance/Market Name | Species | Type of Study | Results | Reference |
---|---|---|---|---|---|
‘Stealth’ PEGylated liposomes | doxorubicin/Doxil | dog | toxicity and efficacy | maximal tolerated dose: 1 mg/kg IV every 3 weeks; the dose-limiting toxicity: cutaneous toxicity resembling palmar-plantar erythrodysesthesia, lack of significant neutropenia or cardiomyopathy; an overall response rate was 25.5% (5 of 51 dogs had complete responses and 8 of 51 dogs had partial responses) | [20] |
‘Stealth’ PEGylated liposomes | doxorubicin/Doxil | dog | randomized, efficacy and toxicity | no differences in survival time between dogs with splenic haemangiosarcoma after splenectomy treated with Doxil and free Dox as an adjuvant monotherapy; adverse side effects: a desquamating dermatitis like palmar-plantar erythrodysesthesia, anaphylactic reaction; lack of cardiotoxicity | [19] |
‘Stealth’ PEGylated liposomes | doxorubicin/Doxil | dog | prospective, unmasked, uncontrolled toxicity, pharmacokinetic, efficacy | intraperitoneal administration of Doxil does not prevent intraabdominal recurrence of haemangiosarcoma in dogs; effective drug concentration is obtained after intraperitoneal administration and its clearance is comparable with IV administration | [24] |
‘Stealth’ PEGylated liposomes | doxorubicin/Caelyx | cat | efficacy | response rate: 70%; 2 of 10 cats had complete responses and 5 of 10 cats had partial responses when Caelyx was administered together with daily radiotherapy | [22] |
Non-PEGylated liposomes | doxorubicin/Myocet | dog | efficacy-case report | complete response with Myocet (35 mg/m2 IV every 3–6 weeks administered 6 times) in a dog with an immunoglobulin A-secreting chemotherapy-resistant myeloma | [25] |
Non-PEGylated liposomes | doxorubicin/Myocet | dog | toxicity | no cardiomyopathy | [26] |
Non-PEGylated liposomes | doxorubicin/Myocet | dog | preclinical toxicology | dose-limiting toxicity after intraperitoneal administration: chemical peritonitis; other adverse side effects: abdominal toxicity, myelosuppression and thoracic toxicity | [27] |
Non-PEGylated liposomes | doxorubicin/Myocet | dog | preclinical toxicology | maximal tolerated dose: 2.25 mg/kg, adverse effect: pyrexia | [28] |
Low temperature sensitive liposomes (LTSL) | doxorubicin | dog | toxicity and pharmacokinetic | dose-limiting toxicities: grade 4 neutropenia, acute death secondary to liver failure; adverse side effects: myelosuppression, cardiac failure; maximal tolerated dose: 0.93 mg/kg; response rate: 90% (6 of 20 dogs had partial response and 12 of 20 dogs had stable disease after at least 2 doses of LTSL-doxorubicin (0.7–1.0 mg/kg IV over 30 min) concurrently with local hyperthermia | [21] |
‘Stealth’ PEGylated liposomes | cisplatin/SPI-77 | dog | randomized, multi-centre efficacy | no differences in survival time in 40 dogs with spontaneous osteosarcoma that underwent limb amputation after adjuvant SPI-77 administration compared to carboplatin therapy | [29] |
Liposomes | vincristine | dog | pharmacokinetic | increase therapeutic index of liposomal vincristine after single IV injection 0.07 mg/kg | [30] |
Liposomes | paclitaxel | dog | pharmacokinetic and biodistribution | 15-fold higher paclitaxel concentration in the lung at 2 h after paclitaxel liposomes IV administration than after free paclitaxel injection | [31] |
Polysaccharide hyaluronan | cisplatin | dog | pharmacokinetic | 1000-fold greater drug concentration in in tumours than in plasma after intratumoral injection (20 mg of cisplatin in the hyaluronan-cisplatin conjugate) | [53] |
Polysaccharide hyaluronan | cisplatin | dog | efficacy and pharmacokinetics | 3 of 7 dogs with oral and nasal squamous cell carcinoma had complete response and 3 of 7 dogs had stable disease (dose 10–30 mg/m2 intratumoral or into peritumoral submucosa once every 3 weeks, approximately 4 times); adverse side effects: myelosuppression, cardiotoxicity, hepatic toxicosis; lack of nephrotoxicity | [54] |
PLGA-block(b)-PEG functionalized with a terminal triphenyl-phosphonium cation | platin (M) a | dog | safety and biodistribution | cross the blood brain barrier and accumulate in the brain; minimal adverse reactions after single IV injection at doses: 0.5 mg/kg, 2.9 mg/kg and 2.2 mg/kg | [57] |
Lipid nanoemulsion | carmustine | dog | safety and efficacy pilot study | no difference between the treatment of LDE carmustine and free carmustine; adverse side effect: neutropenia | [33] |
Nanocrystal | cisplatin | dog | biodistribution, proof of concept, safety | no results reported: study within recruitment or currently ongoing | [68] b |
Nanocrystal | paclitaxel/Crititax | dog | safety and pharmacokinetics | maximal tolerated dose: 120 mg/m2, dose-limiting toxicity: 4 grade neutropenia; starting dose for phase I/II clinical trials: 80 mg/m2 IV | [58,68c] |
Glutathione stabilized gold nanoparticles | doxorubicin | cat | in vitro and in ovo efficacy | higher cytotoxic effect of Dox conjugated to glutathione stabilized gold nanoparticles (Au-GSH-Dox) than free Dox in fibrosarcoma cell lines with high activity of P glycoprotein (FFS1WAW, FFS1 and FFS3), significantly reduced tumour size after single intratumoral injection of Au-GSH-Dox | [64,65] |
PEG and BSA functionalized gold nanoparticles | Zn(DION2)Cl (TS262), CoCl2(H2O))(DION)2[(BF4)] (TS265) | dog | in vitro efficacy | higher cytotoxic effect of tested compounds in canine mammary tumour cell line (FR37-CMT) than free Dox or cisplatin | [66] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabielska-Koczywąs, K.; Lechowski, R. The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules 2017, 22, 2167. https://doi.org/10.3390/molecules22122167
Zabielska-Koczywąs K, Lechowski R. The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules. 2017; 22(12):2167. https://doi.org/10.3390/molecules22122167
Chicago/Turabian StyleZabielska-Koczywąs, Katarzyna, and Roman Lechowski. 2017. "The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats" Molecules 22, no. 12: 2167. https://doi.org/10.3390/molecules22122167
APA StyleZabielska-Koczywąs, K., & Lechowski, R. (2017). The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules, 22(12), 2167. https://doi.org/10.3390/molecules22122167