The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats
Abstract
:1. Background
Search Methodology
2. Liposomes
3. Liposomes for Immunotherapy and Gene Delivery
4. Polymer-Based Nanoparticles
5. Nanocrystals
6. Gold Nanoparticles
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Au-GSH-Dox | doxorubicin conjugated to glutathione-stabilized gold nanoparticles |
Au-NPs AVMA | gold nanoparticles American Veterinary Medical Association |
BSA | bovine serum albumin |
DDS | drug delivery system |
DFS | disease free survival |
FDA | Food and Drug Administration |
FISS | feline injection-site sarcoma |
HA | polysaccharide hyaluronan |
HA-Pt | cisplatin polysaccharide hyaluronan |
IL-2 | interleukin 2 |
IL-12 | interleukin 12 |
IV | intravenous |
LC | liposomal clodronate |
LDC | liposome-DNA complexes |
LLD | low sensitive liposome doxorubicin |
L-MTP-PE | Liposomal Muramide-Tripeptide-phosphatidylethanolamine |
L-VCR | liposome encapsulated vincristine |
MDR | multi drug resistance |
MFI | metastasis free interval |
OS | overall survival |
OSA | osteosarcoma |
PEG | polyethylene glycol |
P-gp | P-glycoprotein |
PLGA | poly (lactic-co-glycolic acid) |
PPPS | palmar-plantar erythrodysesthesia |
RES | reticulo-endothelial system |
ST | survival time |
TAM | tumour associated macrophages |
References
- Biller, B.; Berg, J.; Garrett, L.; Ruslander, D.; Wearing, R.; Abbott, B.; Patel, M.; Smith, D.; Bryan, C. AAHA oncology guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2016, 52, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.W.; Ostrander, E.A. Domestic dogs and cancer research: A breed-based genomics approach. ILAR J. 2014, 55, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Zabielska-Koczywas, K.; Wojtalewicz, A.; Lechowski, R. Current knowledge on feline injection-site sarcoma treatment. Acta Vet. Scand. 2017, 59, 47. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2011, 12, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002, 54, 631–651. [Google Scholar] [CrossRef]
- Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Mealey, K.L.; Fidel, J.P. Glycoprotein mediated drug interactions in animals and humans with cancer. J. Vet. Intern. Med. 2015, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Liang, X.J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin. J. Cancer 2012, 31, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Susa, M.; Iyer, A.K.; Ryu, K.; Hornicek, F.J.; Mankin, H.; Amiji, M.M.; Duan, Z. Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer 2009, 9, 399. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.J.; Cheng, J.; Man, C.W.Y.; Wong, W.T.; Cheng, S.H. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Liu, J.; He, Q.; Wang, L.; Shi, J. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials 2013, 34, 2719–2730. [Google Scholar] [CrossRef] [PubMed]
- Aniola, J.; Selman, S.H.; Lilge, L.; Keck, R.; Jankun, J. Spatial distribution of liposome encapsulated tin etiopurpurin dichloride (SnET2) in the canine prostate: Implications for computer simulation of photodynamic therapy. Int. J. Mol. Med. 2003, 11, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Fenger, J.M.; London, C.A.; Kisseberth, W.C. Canine osteosarcoma: A naturally occurring disease to inform pediatric oncology. ILAR J. 2014, 55, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Mueller, F.; Fuchs, B.; Kaser-Hotz, B. Comparative biology of human and canine osteosarcoma. Anticancer Res. 2007, 27, 155–164. [Google Scholar] [PubMed]
- Paoloni, M.; Khanna, C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer 2008, 8, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Teske, E.; Rutteman, G.R.; Kirpenstein, J.; Hirschberger, J. A randomized controlled study into the efficacy and toxicity of pegylated liposome encapsulated doxorubicin as an adjuvant therapy in dogs with splenic haemangiosarcoma. Vet. Comp. Oncol. 2011, 9, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Vail, D.M.; Kravis, L.D.; Cooley, A.J.; Chun, R.; MacEwen, E.G. Preclinical trial of doxorubicin entrapped in sterically stabilized liposomes in dogs with spontaneously arising malignant tumors. Cancer Chemother. Pharmacol. 1997, 39, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Hauck, M.L.; La Rue, S.M.; Petros, W.P.; Poulson, J.M.; Yu, D.; Spasojevic, I.; Pruitt, A.F.; Klein, A.; Case, B.; Thrall, D.E.; et al. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin. Cancer Res. 2006, 12, 4004–4010. [Google Scholar] [CrossRef] [PubMed]
- Kleiter, M.; Tichy, A.; Willmann, M.; Pagitz, M.; Wolfesberger, B. Concomitant liposomal doxorubicin and daily palliative radiotherapy in advanced feline soft tissue sarcomas. Vet. Radiol. Ultrasound 2010, 51, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rafiyath, S.M.; Rasul, M.; Lee, B.; Wei, G.; Lamba, G.; Liu, D. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: A meta-analysis. Exp. Hematol. Oncol. 2012, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Sorenmo, K.; Samluk, M.; Clifford, C.; Baez, J.; Barrett, J.S.; Poppenga, R.; Overley, B.; Skorupski, K.; Oberthaler, K.; Van Winkle, T.; et al. Clinical and pharmacokinetic characteristics of intracavitary administration of pegylated liposomal encapsulated doxorubicin in dogs with splenic hemangiosarcoma. J. Vet. Intern. Med. 2007, 21, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Kisseberth, W.C.; Macewen, E.G.; Helfand, S.C.; Vail, D.M.; London, C.A.; Keller, E.T. Response to liposome-encapsulated doxorubicin (TLC D-99) in a dog with myeloma. J. Vet. Intern. Med. 1995, 9, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Kanter, P.M.; Bullard, G.A.; Ginsberg, R.A.; Pilkiewicz, F.G.; Mayer, L.D.; Cullis, P.R.; Pavelic, Z.P. Comparison of the cardiotoxic effects of liposomal doxorubicin (TLC D-99) versus free doxorubicin in beagle dogs. In Vivo 1993, 7, 17–26. [Google Scholar] [PubMed]
- Kanter, P.M.; Klaich, G.; Bullard, G.A.; King, J.M.; Pavelic, Z.P. Preclinical toxicology study of liposome encapsulated doxorubicin (TLC D-99) given intraperitoneally to dogs. In Vivo 1994, 8, 975–982. [Google Scholar] [PubMed]
- Kanter, P.M.; Bullard, G.A.; Pilkiewicz, F.G.; Mayer, L.D.; Cullis, P.R.; Pavelic, Z.P. Preclinical toxicology study of liposome encapsulated doxorubicin (TLC D-99): Comparison with doxorubicin and empty liposomes in mice and dogs. In Vivo 1993, 7, 85–95. [Google Scholar] [PubMed]
- Vail, D.M.; Kurzman, I.D.; Glawe, P.C.; O’Brien, M.G.; Chun, R.; Garrett, L.D.; Obradovich, J.E.; Fred, R.M.; Khanna, C.; Colbern, G.T.; et al. STEALTH liposome-encapsulated cisplatin (SPI-77) versus carboplatin as adjuvant therapy for spontaneously arising osteosarcoma (OSA) in the dog: A randomized multicenter clinical trial. Cancer Chemother. Pharmacol. 2002, 50, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Mao, W.; Shi, R.; Jiang, P.; Wang, Q.; Zhu, R.; Wang, T.; Ma, Y. Pharmacokinetics of liposomal-encapsulated and un-encapsulated vincristine after injection of liposomal vincristine sulfate in beagle dogs. Cancer Chemother. Pharmacol. 2014, 73, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ye, Y.; Li, J.; Wei, Y.M. Preparation and the in-vivo evaluation of paclitaxel liposomes for lung targeting delivery in dogs. J. Pharm. Pharmacol. 2011, 63, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Harisa, G.I.; Alanazi, F.K. Low density lipoprotein bionanoparticles: From cholesterol transport to delivery of anti-cancer drugs. Saudi Pharm. J. 2014, 22, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S.R.R.; Maranhão, R.C.; Guerra, J.L.; Coelho, B.M.P.; Barboza, R.; Pozzi, D.H.B. Pilot clinical study of carmustine associated with a lipid nanoemulsion in combination with vincristine and prednisone for the treatment of canine lymphoma. Vet. Comp. Oncol. 2015, 13, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Zeisberger, S.M.; Odermatt, B.; Marty, C.; Zehnder-Fjällman, A.H.M.; Ballmer-Hofer, K.; Schwendener, R.A. Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach. Br. J. Cancer 2006, 95, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Hafeman, S.; London, C.; Elmslie, R.; Dow, S. Evaluation of liposomal clodronate for treatment of malignant histiocytosis in dogs. Cancer Immunol. Immunother. 2010, 59, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Vail, D.M.; MacEwen, E.G.; Kurzman, I.D.; Dubielzig, R.R.; Helfand, S.C.; Kisseberth, W.C.; London, C.A.; Obradovich, J.E.; Madewell, B.R.; Rodriguez, C.O. Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: A randomized multi-institutional clinical trial. Clin. Cancer Res. 1995, 1, 1165–1170. [Google Scholar] [PubMed]
- MacEwen, E.G.; Kurzman, I.D.; Rosenthal, R.C.; Smith, B.W.; Manley, P.A.; Roush, J.K.; Howard, P.E. Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J. Natl. Cancer Inst. 1989, 81, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Kurzman, I.D.; MacEwen, E.G.; Rosenthal, R.C.; Fox, L.E.; Keller, E.T.; Helfand, S.C.; Vail, D.M.; Dubielzig, R.R.; Madewell, B.R.; Rodriguez, C.O.; et al. Adjuvant therapy for osteosarcoma in dogs: Results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clin. Cancer Res. 1995, 1, 1595–1601. [Google Scholar] [PubMed]
- Meyers, P.A.; Schwartz, C.L.; Krailo, M.D.; Healey, J.H.; Bernstein, M.L.; Betcher, D.; Ferguson, W.S.; Gebhardt, M.C.; Goorin, A.M.; Harris, M.; et al. Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival—A report from the Children’s Oncology Group. J. Clin. Oncol. 2008, 26, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.J.; Kleinerman, E.S.; Krailo, M.D.; Betcher, D.L.; Healey, J.H.; Iii, E.U.C.; Michael, L.; Weiner, M.A.; Wells, R.J.; Womer, R.B. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: A report from the Children’s Oncology Group. Cancer 2009, 115, 5339–5348. [Google Scholar] [CrossRef] [PubMed]
- Meyers, P.A. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev. Anticancer Ther. 2009, 9, 1035–1049. [Google Scholar] [CrossRef] [PubMed]
- Macewen, E.G.; Kurzman, I.D.; Vail, D.M.; Dubielzig, R.R.; Everlith, K.; Madewell, B.R.; Rodriguez, C.O.; Phillips, B.; Zwahlen, C.H.; Obradovich, J.; et al. Adjuvant therapy for melanoma in dogs: Results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor 1. Clin. Cancer Res. 1999, 5, 4249–4258. [Google Scholar] [PubMed]
- Fox, L.E.; MacEwen, E.G.; Kurzman, I.D.; Dubielzig, R.R.; Helfand, S.C.; Vail, D.M.; Kisseberth, W.; London, C.; Madewell, B.R.; Rodriguez, C.O. Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine for the treatment of feline mammary adenocarcinoma—A multicenter randomized double-blind study. Cancer Biother. 1995, 10, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Queiroga, F.L.; Raposo, T.; Carvalho, M.I.; Prada, J.; Pires, I. Canine mammary tumours as a model to study human breast cancer: Most recent findings. In Vivo 2011, 25, 455–465. [Google Scholar] [PubMed]
- Rivera, P.; von Euler, H. Molecular biological aspects on canine and human mammary tumors. Vet. Pathol. 2011, 48, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Uva, P.; Aurisicchio, L.; Watters, J.; Loboda, A.; Kulkarni, A.; Castle, J.; Palombo, F.; Viti, V.; Mesiti, G.; Zappulli, V.; et al. Comparative expression pathway analysis of human and canine mammary tumors. BMC Genom. 2009, 10, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, S.A.; Yang, J.C.; Topalian, S.L.; Schwartzentruber, D.J.; Weber, J.S.; Parkinson, D.R.; Seipp, C.A.; Einhorn, J.H.; White, D.E. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using. J. Am. Med. Assoc. 1994, 271, 907–913. [Google Scholar] [CrossRef]
- Khanna, C.; Anderson, P.M.; Hasz, D.E.; Katsanis, E.; Neville, M.; Klausner, J.S. Interleukin-2 liposome inhalation therapy is safe and effective for dogs with spontaneous pulmonary metastases. Cancer 1997, 79, 1409–1421. [Google Scholar] [CrossRef]
- Khanna, C.; Hasz, D.E.; Klausner, J.S.; Anderson, P.M. Aerosol biologically delivery of interleukin canine studies ’ is nontoxic and effective. Clin. Cancer Res. 1996, 2, 721–734. [Google Scholar] [PubMed]
- Dow, S.; Elmslie, R.; Kurzman, I.; MacEwen, G.; Pericle, F.; Liggitt, D. Phase I study of liposome-DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum. Gene Ther. 2005, 16, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Kamstock, D.; Guth, A.; Elmslie, R.; Kurzman, I.; Liggitt, D.; Coro, L.; Fairman, J.; Dow, S. Liposome–DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma. Cancer Gene Ther. 2006, 13, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Xie, Y.; Davies, N.M.; Cohen, M.S.; Forrest, M.L. Pharmacokinetics and disposition of a localized lymphatic polymeric hyaluronan conjugate of cisplatin in rodents. J. Pharm. Sci. 2010, 99, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- Venable, R.O.; Worley, D.R.; Gustafson, D.L.; Ryan, J.; Iii, E.J.E.; Cai, S.; Cohen, M.S.; Forrest, L. Effects of intratumoral administration of a hyaluronan-cisplatin nanoconjugate to five dogs with soft tissue sarcomas. Am. J. Vet. Res. 2013, 73, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhang, T.; Forrest, W.C.; Yang, Q.; Groer, C.; Mohr, E.; Aires, D.J.; Axiak-Bechtel, S.M.; Flesner, B.K.; Henry, C.J.; et al. Phase I-II clinical trial of hyaluronan-cisplatin nanoconjugate in dogs with naturally occurring malignant tumors. Am. J. Vet. Res. 2016, 77, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Marrache, S.; Dhar, S.; Siekkinen, A.R.; Mclellan, J.M.; Chen, J.; Xia, Y.; Zheng, K.; Wang, C.; Cheng, Y.; Yue, Y.; et al. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012, 109, 16288–16293. [Google Scholar] [CrossRef] [PubMed]
- Marrache, S.; Pathak, R.K.; Dhar, S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc. Natl. Acad. Sci. USA 2014, 111, 10444–10449. [Google Scholar] [CrossRef] [PubMed]
- Feldhaeusser, B.; Platt, S.R.; Marrache, S.; Kolishetti, N.; Pathak, R.K.; Montgomery, D.J.; Reno, L.R.; Howerth, E.; Dhar, S. Evaluation of nanoparticle delivered cisplatin in beagles. Nanoscale 2015, 7, 13822–13830. [Google Scholar] [CrossRef] [PubMed]
- Axiak, S.M.; Selting, K.A.; Decedue, C.J.; Henry, C.J.; Tate, D.; Howell, J.; Bilof, K.J.; Kim, D.Y. Phase I dose escalation safety study of nanoparticulate paclitaxel (CTI 52010) in normal dogs. Int. J. Nanomed. 2011, 6, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Axiak-Bechtel, S.M.; Kumar, S.R.; Dank, K.K.; Clarkson, N.A.; Selting, K.A.; Bryan, J.N.; Rosol, T.J.; Espinosa, J.; Decedue, C.J. Nanoparticulate paclitaxel demonstrates antitumor activity in PC3 and Ace-1 aggressive prostate cancer cell lines. Investig. New Drugs 2013, 31, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Stolik, S.; Delgado, J.A.; Pérez, A.; Anasagasti, L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J. Photochem. Photobiol. B Biol. 2000, 57, 90–93. [Google Scholar] [CrossRef]
- Tomuleasa, C.; Soritau, O.; Orza, A.; Dudea, M.; Petrushev, B.; Mosteanu, O.; Susman, S.; Florea, A.; Pall, E.; Aldea, M.; et al. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J. Gastrointest. Liver Dis. 2012, 21, 187–196. [Google Scholar]
- Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004, 11, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Teodoro, J.G.; Nadeau, J.L. Intratumoral gold-doxorubicin is effective in treating melanoma in mice. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Lewandowski, W.; Król, M.; Pawłowski, K.; Mieczkowski, J.; Lechowski, R.; Zabielska, K. Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles - In vitro studies on Feline fibrosarcoma cell lines. PLoS ONE 2015, 10, e0124955. [Google Scholar] [CrossRef] [PubMed]
- Zabielska-Koczywas, K.; Dolka, I.; Król, M.; Żbikowski, A.; Lewandowski, W.; Mieczkowski, J. Doxorubicin conjugated to glutathione stabilized gold nanoparticles (Au-GSH-Dox) as an effective therapeutic agent for feline injection-site sarcomas—Chick embryo chorioallantoic membrane study. Molecules 2017, 22, E253. [Google Scholar] [CrossRef] [PubMed]
- Raposo, L.R.; Roma-Rodrigues, C.; Jesus, J.; Martins, L.M.D.R.S.; Pombeiro, A.J.; Baptista, P.V.; Fernandes, A.R. Targeting canine mammary tumours via gold nanoparticles functionalized with promising Co(II) and Zn(II) compounds. Vet. Comp. Oncol. 2017, 15, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Sena, E.S.; Bart van der Worp, H.; Bath, P.M.W.; Howells, D.W.; Macleod, M.R. Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biol. 2010, 8, e1000344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Veterinary Medical Association. AVMA Animal Health Studies Database. Available online: https://ebusiness.avma.org/aahsd/study_search.aspx (accessed on 15 August 2017).
DDS | Active Substance/Market Name | Species | Type of Study | Results | Reference |
---|---|---|---|---|---|
‘Stealth’ PEGylated liposomes | doxorubicin/Doxil | dog | toxicity and efficacy | maximal tolerated dose: 1 mg/kg IV every 3 weeks; the dose-limiting toxicity: cutaneous toxicity resembling palmar-plantar erythrodysesthesia, lack of significant neutropenia or cardiomyopathy; an overall response rate was 25.5% (5 of 51 dogs had complete responses and 8 of 51 dogs had partial responses) | [20] |
‘Stealth’ PEGylated liposomes | doxorubicin/Doxil | dog | randomized, efficacy and toxicity | no differences in survival time between dogs with splenic haemangiosarcoma after splenectomy treated with Doxil and free Dox as an adjuvant monotherapy; adverse side effects: a desquamating dermatitis like palmar-plantar erythrodysesthesia, anaphylactic reaction; lack of cardiotoxicity | [19] |
‘Stealth’ PEGylated liposomes | doxorubicin/Doxil | dog | prospective, unmasked, uncontrolled toxicity, pharmacokinetic, efficacy | intraperitoneal administration of Doxil does not prevent intraabdominal recurrence of haemangiosarcoma in dogs; effective drug concentration is obtained after intraperitoneal administration and its clearance is comparable with IV administration | [24] |
‘Stealth’ PEGylated liposomes | doxorubicin/Caelyx | cat | efficacy | response rate: 70%; 2 of 10 cats had complete responses and 5 of 10 cats had partial responses when Caelyx was administered together with daily radiotherapy | [22] |
Non-PEGylated liposomes | doxorubicin/Myocet | dog | efficacy-case report | complete response with Myocet (35 mg/m2 IV every 3–6 weeks administered 6 times) in a dog with an immunoglobulin A-secreting chemotherapy-resistant myeloma | [25] |
Non-PEGylated liposomes | doxorubicin/Myocet | dog | toxicity | no cardiomyopathy | [26] |
Non-PEGylated liposomes | doxorubicin/Myocet | dog | preclinical toxicology | dose-limiting toxicity after intraperitoneal administration: chemical peritonitis; other adverse side effects: abdominal toxicity, myelosuppression and thoracic toxicity | [27] |
Non-PEGylated liposomes | doxorubicin/Myocet | dog | preclinical toxicology | maximal tolerated dose: 2.25 mg/kg, adverse effect: pyrexia | [28] |
Low temperature sensitive liposomes (LTSL) | doxorubicin | dog | toxicity and pharmacokinetic | dose-limiting toxicities: grade 4 neutropenia, acute death secondary to liver failure; adverse side effects: myelosuppression, cardiac failure; maximal tolerated dose: 0.93 mg/kg; response rate: 90% (6 of 20 dogs had partial response and 12 of 20 dogs had stable disease after at least 2 doses of LTSL-doxorubicin (0.7–1.0 mg/kg IV over 30 min) concurrently with local hyperthermia | [21] |
‘Stealth’ PEGylated liposomes | cisplatin/SPI-77 | dog | randomized, multi-centre efficacy | no differences in survival time in 40 dogs with spontaneous osteosarcoma that underwent limb amputation after adjuvant SPI-77 administration compared to carboplatin therapy | [29] |
Liposomes | vincristine | dog | pharmacokinetic | increase therapeutic index of liposomal vincristine after single IV injection 0.07 mg/kg | [30] |
Liposomes | paclitaxel | dog | pharmacokinetic and biodistribution | 15-fold higher paclitaxel concentration in the lung at 2 h after paclitaxel liposomes IV administration than after free paclitaxel injection | [31] |
Polysaccharide hyaluronan | cisplatin | dog | pharmacokinetic | 1000-fold greater drug concentration in in tumours than in plasma after intratumoral injection (20 mg of cisplatin in the hyaluronan-cisplatin conjugate) | [53] |
Polysaccharide hyaluronan | cisplatin | dog | efficacy and pharmacokinetics | 3 of 7 dogs with oral and nasal squamous cell carcinoma had complete response and 3 of 7 dogs had stable disease (dose 10–30 mg/m2 intratumoral or into peritumoral submucosa once every 3 weeks, approximately 4 times); adverse side effects: myelosuppression, cardiotoxicity, hepatic toxicosis; lack of nephrotoxicity | [54] |
PLGA-block(b)-PEG functionalized with a terminal triphenyl-phosphonium cation | platin (M) a | dog | safety and biodistribution | cross the blood brain barrier and accumulate in the brain; minimal adverse reactions after single IV injection at doses: 0.5 mg/kg, 2.9 mg/kg and 2.2 mg/kg | [57] |
Lipid nanoemulsion | carmustine | dog | safety and efficacy pilot study | no difference between the treatment of LDE carmustine and free carmustine; adverse side effect: neutropenia | [33] |
Nanocrystal | cisplatin | dog | biodistribution, proof of concept, safety | no results reported: study within recruitment or currently ongoing | [68] b |
Nanocrystal | paclitaxel/Crititax | dog | safety and pharmacokinetics | maximal tolerated dose: 120 mg/m2, dose-limiting toxicity: 4 grade neutropenia; starting dose for phase I/II clinical trials: 80 mg/m2 IV | [58,68c] |
Glutathione stabilized gold nanoparticles | doxorubicin | cat | in vitro and in ovo efficacy | higher cytotoxic effect of Dox conjugated to glutathione stabilized gold nanoparticles (Au-GSH-Dox) than free Dox in fibrosarcoma cell lines with high activity of P glycoprotein (FFS1WAW, FFS1 and FFS3), significantly reduced tumour size after single intratumoral injection of Au-GSH-Dox | [64,65] |
PEG and BSA functionalized gold nanoparticles | Zn(DION2)Cl (TS262), CoCl2(H2O))(DION)2[(BF4)] (TS265) | dog | in vitro efficacy | higher cytotoxic effect of tested compounds in canine mammary tumour cell line (FR37-CMT) than free Dox or cisplatin | [66] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabielska-Koczywąs, K.; Lechowski, R. The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules 2017, 22, 2167. https://doi.org/10.3390/molecules22122167
Zabielska-Koczywąs K, Lechowski R. The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules. 2017; 22(12):2167. https://doi.org/10.3390/molecules22122167
Chicago/Turabian StyleZabielska-Koczywąs, Katarzyna, and Roman Lechowski. 2017. "The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats" Molecules 22, no. 12: 2167. https://doi.org/10.3390/molecules22122167
APA StyleZabielska-Koczywąs, K., & Lechowski, R. (2017). The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules, 22(12), 2167. https://doi.org/10.3390/molecules22122167