Self-Assembly with 2,6-Bis(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)pyridine: Silver(I) and Iron(II) Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ligand Synthesis and Homometallic Complexation
2.2. Homometallic Silver(I) and Iron(II) Complexes
2.3. Heterometallic Silver(I)-Iron(II) Complex
3. Experimental
General
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cook, T.R.; Stang, P.J. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem. Rev. 2015, 115, 7001–7045. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhou, W.; Qian, G.; Chen, B. Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef] [PubMed]
- Rojas, S.; Devic, T.; Horcajada, P. Metal organic frameworks based on bioactive components. J. Mater. Chem. B 2017, 5, 2560–2573. [Google Scholar] [CrossRef]
- Cai, W.; Chu, C.-C.; Liu, G.; Wáng, Y.-X.J. Metal–Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small 2015, 11, 4806–4822. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. [Google Scholar] [CrossRef] [PubMed]
- Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F.X. Metal Organic Framework Catalysis: Quo vadis? ACS Catal. 2014, 4, 361–378. [Google Scholar] [CrossRef]
- Cook, T.R.; Vajpayee, V.; Lee, M.H.; Stang, P.J.; Chi, K.-W. Biomedical and Biochemical Applications of Self-Assembled Metallacycles and Metallacages. Acc. Chem. Res. 2013, 46, 2464–2474. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.L.; Yan, X.; Stang, P.J. Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications. Acc. Chem. Res. 2016, 49, 2527–2539. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Y.-X.; Yang, H.-B. Recent advances in the construction of fluorescent metallocycles and metallocages via coordination-driven self-assembly. Dalton Trans. 2015, 44, 867–890. [Google Scholar] [CrossRef] [PubMed]
- Croue, V.; Goeb, S.; Salle, M. Metal-driven self-assembly: The case of redox-active discrete architectures. Chem. Commun. 2015, 51, 7275–7289. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Croue, V.; Goeb, S.; Szaloki, G.; Allain, M.; Salle, M. Reversible Guest Uptake/Release by Redox-Controlled Assembly/Disassembly of a Coordination Cage. Angew. Chem. Int. Ed. 2016, 55, 1746–1750. [Google Scholar] [CrossRef] [PubMed]
- Bivaud, S.; Goeb, S.; Croue, V.; Allain, M.; Pop, F.; Salle, M. Tuning the size of a redox-active tetrathiafulvalene-based self-assembled ring. Beilstein J. Org. Chem. 2015, 11, 966–971. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bivaud, S.; Goeb, S.; Croue, V.; Dron, P.I.; Allain, M.; Salle, M. Self-Assembled Containers Based on Extended Tetrathiafulvalene. J. Am. Chem. Soc. 2013, 135, 10018–10021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Y.; Gao, W.-X.; Lin, L.; Jin, G.-X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 2017, 344, 323–344. [Google Scholar] [CrossRef]
- Li, H.; Yao, Z.-J.; Liu, D.; Jin, G.-X. Multi-component coordination-driven self-assembly toward heterometallic macrocycles and cages. Coord. Chem. Rev. 2015, 293–294, 139–157. [Google Scholar] [CrossRef]
- Laramée-Milette, B.; Nastasi, F.; Puntoriero, F.; Campagna, S.; Hanan, G.S. Photo-Induced Assembly of a Luminescent Tetraruthenium Square. Chem. Eur. J. 2017. [Google Scholar] [CrossRef]
- Shen, C.; Kennedy, A.D.W.; Donald, W.A.; Torres, A.M.; Price, W.S.; Beves, J.E. Self-assembled supramolecular cages containing dinuclear ruthenium(II) polypyridyl complexes. Inorg. Chim. Acta 2017, 458, 122–128. [Google Scholar] [CrossRef]
- Yang, J.; Bhadbhade, M.; Donald, W.A.; Iranmanesh, H.; Moore, E.G.; Yan, H.; Beves, J.E. Self-assembled supramolecular cages containing ruthenium(II) polypyridyl complexes. Chem. Commun. 2015, 51, 4465–4468. [Google Scholar] [CrossRef] [PubMed]
- Schouwey, C.; Holstein, J.J.; Scopelliti, R.; Zhurov, K.O.; Nagornov, K.O.; Tsybin, Y.O.; Smart, O.S.; Bricogne, G.; Severin, K. Self-Assembly of a Giant Molecular Solomon Link from 30 Subcomponents. Angew. Chem. Int. Ed. 2014, 53, 11261–11265. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, H.; Arachchige, K.S.A.; Bhadbhade, M.; Donald, W.A.; Liew, J.Y.; Liu, K.T.C.; Luis, E.T.; Moore, E.G.; Price, J.R.; Yan, H.; et al. Chiral Ruthenium(II) Complexes as Supramolecular Building Blocks for Heterometallic Self-Assembly. Inorg. Chem. 2016, 55, 12737–12751. [Google Scholar] [CrossRef] [PubMed]
- Beves, J.E.; Constable, E.C.; Decurtins, S.; Dunphy, E.L.; Housecroft, C.E.; Keene, T.D.; Neuberger, M.; Schaffner, S.; Zampese, J.A. Structural diversity in the reactions of 4′-(pyridyl)-2,2′:6′,2″-terpyridine ligands and bis{4-(4-pyridyl)-2,2′:6′,2″-terpyridine}iron(II) with copper(II) salts. CrystEngComm 2009, 11, 2406–2416. [Google Scholar] [CrossRef]
- Beves, J.E.; Dunphy, E.L.; Constable, E.C.; Housecroft, C.E.; Kepert, C.J.; Neuburger, M.; Price, D.J.; Schaffner, S. Vectorial property dependence in bis{4′-(n-pyridyl)-2,2″:6′,2″-terpyridine}iron(ii) and ruthenium(ii) complexes with n = 2, 3 and 4. Dalton Trans. 2008, 386–396. [Google Scholar] [CrossRef]
- Beves, J.E.; Bray, D.J.; Clegg, J.K.; Constable, E.C.; Housecroft, C.E.; Jolliffe, K.A.; Kepert, C.J.; Lindoy, L.F.; Neuburger, M.; Price, D.J.; Schaffner, S.; Schaper, F. Expanding the 4,4′-bipyridine ligand: Structural variation in {M(pytpy)2}2+ complexes (pytpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, M = Fe, Ni, Ru) and assembly of the hydrogen-bonded, one-dimensional polymer. Inorg. Chim. Acta 2008, 361, 2582–2590. [Google Scholar] [CrossRef]
- Beves, J.E.; Constable, E.C.; Housecroft, C.E.; Neuburger, M.; Schaffner, S. A palladium(II) complex of 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine: Lattice control through an interplay of stacking and hydrogen bonding effects. Inorg. Chem. Commun. 2007, 10, 1185–1188. [Google Scholar] [CrossRef]
- Ollagnier, C.M.A.; Nolan, D.; Fitchett, C.M.; Draper, S.M. 4′-(pyridyl)-2,2′:6′,2″-Terpyridine ligands: Discrete metal complexes and their polymeric assemblies as a function of N-pyridyl substitution patterns. Supramol. Chem. 2012, 24, 563–571. [Google Scholar] [CrossRef]
- Ollagnier, C.M.; Nolan, D.; Fitchett, C.M.; Draper, S.M. [Ru(3-pyridyl-4′-terpy)2]2+ as a metallo-ligand—Adding to the complexity of supramolecular polymers. Inorg. Chem. Commun. 2007, 10, 1045–1048. [Google Scholar] [CrossRef]
- Vasdev, R.A.S.; Preston, D.; Crowley, J.D. Functional metallosupramolecular architectures using 1,2,3-triazole ligands: It’s as easy as 1,2,3 “click”. Dalton Trans. 2017, 46, 2402–2414. [Google Scholar] [CrossRef] [PubMed]
- Dana, B.H.; Robinson, B.H.; Simpson, J. Intramolecular interactions in 2,6-pyridylacetylenes and their Co2(CO)4dppm complexes. J. Organomet. Chem. 2002, 648, 251–269. [Google Scholar] [CrossRef]
- Bevilacqua, V.; King, M.; Chaumontet, M.; Nothisen, M.; Gabillet, S.; Buisson, D.; Puente, C.; Wagner, A.; Taran, F. Copper-Chelating Azides for Efficient Click Conjugation Reactions in Complex Media. Angew. Chem. Int. Ed. 2014, 53, 5872–5876. [Google Scholar] [CrossRef] [PubMed]
- Crowley, J.D.; Bandeen, P.H.; Hanton, L.R. A one pot multi-component CuAAC “click” approach to bidentate and tridentate pyridyl-1,2,3-triazole ligands: Synthesis, x-ray structures and copper(II) and silver(I) complexes. Polyhedron 2010, 29, 70–83. [Google Scholar] [CrossRef]
- Crowley, J.D.; Bandeen, P.H. A multicomponent CuAAC “click” approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: New building blocks for the generation of metallosupramolecular architectures. Dalton Trans. 2010, 39, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Preston, D.; Tucker, R.A.J.; Garden, A.L.; Crowley, J.D. Heterometallic [MnPtn(L)2n]x+ Macrocycles from Dichloromethane-Derived Bis-2-pyridyl-1,2,3-triazole Ligands. Inorg. Chem. 2016, 55, 8928–8934. [Google Scholar] [CrossRef] [PubMed]
- Kilpin, K.J.; Gower, M.L.; Telfer, S.G.; Jameson, G.B.; Crowley, J.D. Toward the Self-Assembly of Metal-Organic Nanotubes Using Metal-Metal and π-Stacking Interactions: Bis(pyridylethynyl) Silver(I) Metallo-macrocycles and Coordination Polymers. Inorg. Chem. 2011, 50, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Gower, M.L.; Crowley, J.D. Self-assembly of silver(I) metallomacrocycles using unsupported 1,4-substituted-1,2,3-triazole “click” ligands. Dalton Trans. 2010, 39, 2371–2378. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huffman, J.C.; Flood, A.H. Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? Chem. Commun. 2007, 26, 2692–2694. [Google Scholar] [CrossRef] [PubMed]
- Vellas, S.K.; Lewis, J.E.M.; Shankar, M.; Sagatova, A.; Tyndall, J.D.A.; Monk, B.C.; Fitchett, C.M.; Hanton, L.R.; Crowley, J.D. [Fe2L3]4+ cylinders derived from bis(bidentate) 2-pyridyl-1,2,3-triazole “click” ligands: Synthesis, structures and exploration of biological activity. Molecules 2013, 18, 6383–6407. [Google Scholar] [CrossRef] [PubMed]
- White, A.P.; Robertson, K.N.; Cameron, T.S.; Liengme, B.V.; Leznoff, D.B.; Trudel, S.; Aquino, M.A.S. Synthesis and characterization of [M(DMSO)6][SnCl6] complexes (M = Fe2+, Co2+, and Ni2+)—An old mystery solved. Can. J. Chem. 2007, 85, 372–378. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Compound | Diffusion Coefficient (D) × 10−10 m2 s−1 | |
---|---|---|
d6-DMSO | d3-Acetonitrile | |
L | 2.5 | 14.2 |
[Ag(L)]NO3 | 1.8 | - |
[Ag(L)]BF4 | 2.3 | - |
[Ag(L)]SbF6 | 2.2 | - |
[Fe(L)2](BF4)2 | 2.4 | 8.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ross, D.A.W.; Preston, D.; Crowley, J.D. Self-Assembly with 2,6-Bis(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)pyridine: Silver(I) and Iron(II) Complexes. Molecules 2017, 22, 1762. https://doi.org/10.3390/molecules22101762
Ross DAW, Preston D, Crowley JD. Self-Assembly with 2,6-Bis(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)pyridine: Silver(I) and Iron(II) Complexes. Molecules. 2017; 22(10):1762. https://doi.org/10.3390/molecules22101762
Chicago/Turabian StyleRoss, Daniel A. W., Dan Preston, and James D. Crowley. 2017. "Self-Assembly with 2,6-Bis(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)pyridine: Silver(I) and Iron(II) Complexes" Molecules 22, no. 10: 1762. https://doi.org/10.3390/molecules22101762