Characterization of French Coriander Oil as Source of Petroselinic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Vegetable Oil Yield
2.2. Vegetable Oil Composition
2.3. Fatty Acid Profile
2.4. Sterol Composition
2.5. Tocols Composition
2.6. Phospholipid Composition
2.7. Pigments Content
2.8. Elements Content
3. Materials and Methods
3.1. Material
3.2. Chemicals and Reagents
3.3. Lipid Extraction
3.4. Physicochemical Analyses
3.5. Gas Chromatography
3.5.1. Vegetable Oil Composition
3.5.2. Acid Composition
3.5.3. Sterol Composition
3.6. High-Performance Liquid Chromatography
3.7. Nuclear Magnetic Resonance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sharma, R.P.; Singh, R.S.; Verma, T.P.; Tailor, B.L.; Sharma, S.S.; Singh, S.K. Coriander the taste of vegetables: Present and future prospectus for coriander seed production in southeast Rajasthan. Econ. Aff. 2014, 59, 345–354. [Google Scholar] [CrossRef]
- Wangensteen, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem. 2004, 88, 293–297. [Google Scholar] [CrossRef]
- Kubo, I.; Fujita, K.; Kubo, A.; Nihei, K.; Ogura, T. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J. Agric. Food Chem. 2004, 52, 3329–3332. [Google Scholar] [CrossRef] [PubMed]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Potential of coriander (Coriandrum sativum) oil as a natural antimicrobial compound in controlling Campylobacter jejuni in raw meat. Biosci. Biotechnol. Biochem. 2010, 74, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Reuter, J.; Huyke, C.; Casetti, F.; Theek, C.; Frank, U.; Augustin, M.; Schempp, C. Anti-inflammatory potential of a lipolotion containing coriander oil in the ultraviolet erythema test. J. Dtsch. Dermatol. Ges. 2008, 6, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, P.; Bisht, S. Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models. Indian J. Pharmacol. 2011, 43, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Kharade, S.M.; Gumate, D.S.; Patil, V.M.; Kokane, S.P.; Naikwade, N.S. Behavioral and biochemical studies of seeds of Coriandrum Sativum in various stress models of depression. Int. J. Curr. Res. Rev. 2011, 3, 4–11. [Google Scholar]
- Eidi, M.; Eidi, A.; Saeidi, A.; Molanaei, S.; Sadeghipour, A.; Bahar, M.; Bahar, K. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother. Res. 2009, 23, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Uitterhaegen, E.; Nguyen, Q.H.; Sampaio, K.A.; Stevens, C.V.; Merah, O.; Talou, T.; Rigal, L.; Evon, P. Extraction of coriander oil using twin-screw extrusion: Feasibility study and potential press cake applications. J. Am. Oil Chem. Soc. 2015, 92, 1219–1233. [Google Scholar] [CrossRef]
- Sahib, N.G.; Anwar, F.; Gilani, A.H.; Hamid, A.A.; Saari, N.; Alkharfy, K.M. Coriander (Coriandrum sativum L.): A potential source of high-value components for functional foods and nutraceuticals—A review. Phytother. Res. 2013, 27, 1439–1456. [Google Scholar] [PubMed]
- Delbeke, E.I.P.; Everaert, J.; Uitterhaegen, E.; Verweire, S.; Verlee, A.; Talou, T.; Soetaert, W.; van Bogaert, I.N.A.; Stevens, C.V. Petroselinic acid purification and its use for the fermentation of new sophorolipids. AMB Express 2016, 6. [Google Scholar] [CrossRef] [PubMed][Green Version]
- European Food Safety Authority (EFSA). Scientific opinion on the safety of “coriander seed oil” as a Novel Food Ingredient. EFSA J. 2013, 11, 3422–3442. [Google Scholar]
- Alaluf, S.; Green, M.R.; Powell, J.R.; Rogers, J.S.; Watkinson, A.; Cain, F.W.; Hu, H.L.; Rawlings, A.V. Petroselinic Acid and Its Use in Food. U.S. Patent 6,365,175 B1, 2 April 2002. [Google Scholar]
- Alaluf, S.; Hu, H.L.; Green, M.R.; Powell, J.R.; Rawlings, A.V.; Rogers, J.S. Cosmetic Use of Petroselinic Acid. Patent EP 1,013,178 B1, 28 September 2005. [Google Scholar]
- Kleiman, R. Chemistry of new industrial oilseed crops. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 196–203. [Google Scholar]
- Baird, M.S.; Preskett, D. Method of Obtaining a Solid Component Rich in a Petroselinic Compound. U.S. Patent 2011/0009487, 13 January 2011. [Google Scholar]
- Sriti, J.; Wannes, W.; Talou, T.; Mhamdi, B.; Cerny, M.; Marzouk, B. Lipid profiles of Tunisian Coriander (Coriandrum sativum) seed. J. Am. Oil Chem. Soc. 2010, 87, 395–400. [Google Scholar] [CrossRef]
- Sriti, J.; Talou, T.; Msaada, K.; Marzouk, B. Comparative analysis of fatty acid, sterol and tocol composition of Tunisian and Canadian Coriander (Coriandrum sativum L.) fruit. Anal. Chem. Lett. 2011, 1, 375–383. [Google Scholar] [CrossRef]
- Ramadan, M.; Mörsel, J.-T. Oil composition of coriander (Coriandrum sativum L.) fruit-seeds. Eur. Food Res. Technol. 2002, 215, 204–209. [Google Scholar] [CrossRef]
- Msaada, K.; Hosni, K.; Taarit, M.B.; Hammami, M.; Marzouk, B. Effects of growing region and maturity stages on oil yield and fatty acid composition of coriander (Coriandrum sativum L.) fruit. Sci. Hortic. 2009, 120, 525–531. [Google Scholar] [CrossRef]
- Matthaus, B.; Vosmann, K.; Pham, L.Q.; Aitzetmüller, K. FA and tocopherol composition of Vietnamese oilseeds. J. Am. Oil Chem. Soc. 2003, 80, 1013–1020. [Google Scholar] [CrossRef]
- Kiralan, M.; Calikoglu, E.; Ipek, A.; Bayrak, A.; Gurbuz, B. Fatty acid and volatile oil composition of different coriander (Coriandrum sativum) registered varieties cultivated in Turkey. Chem. Nat. Compd. 2009, 45, 100–102. [Google Scholar] [CrossRef]
- Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem. 2016, 213, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, D.W.; Robertson, G.W.; Millam, S.; Holmes, A.C. The determination of the petroselinic acid content of coriander (Coriandrum sativum) oil by capillary gas chromatography. Phytochem. Anal. 1992, 3, 250–253. [Google Scholar] [CrossRef]
- Mhemdi, H.; Rodier, E.; Kechaou, N.; Fages, J. A supercritical tuneable process for the selective extraction of fats and essential oil from coriander seeds. J. Food Eng. 2011, 105, 609–616. [Google Scholar] [CrossRef]
- Sriti, J.; Talou, T.; Faye, M.; Vilarem, G.; Marzouk, B. Oil extraction from coriander fruits by extrusion and comparison with solvent extraction processes. Ind. Crops Prod. 2011, 33, 659–664. [Google Scholar] [CrossRef]
- Sriti, J.; Msaada, K.; Talou, T.; Faye, M.; Amalia Kartika, I.; Marzouk, B. Extraction of coriander oil by twin-screw extruder: Screw configuration and operating conditions effect. Ind. Crops Prod. 2012, 40, 355–360. [Google Scholar] [CrossRef]
- Ngo-Duy, C.-C.; Destaillats, F.; Keskitalo, M.; Arul, J.; Angers, P. Triacylglycerols of Apiaceae seed oils: Composition and regiodistribution of fatty acids. Eur. J. Lipid Sci. Technol. 2009, 111, 164–169. [Google Scholar] [CrossRef]
- Gunstone, F.D. Sunflower oil. In Vegetable Oils in Food Technology: Composition, Properties and Uses; Wiley-Blackwell: Chichester, UK, 2011; pp. 137–168. [Google Scholar]
- Guidotti, M.; Ravasio, N.; Psaro, R.; Gianotti, E.; Coluccia, S.; Marchese, L. Epoxidation of unsaturated FAMEs obtained from vegetable source over Ti(IV)-grafted silica catalysts: A comparison between ordered and non-ordered mesoporous materials. J. Mol. Catal. A Chem. 2006, 250, 218–225. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.-T. Oxidative stability of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) crude seed oils upon stripping. Eur. J. Lipid Sci. Technol. 2004, 106, 35–43. [Google Scholar] [CrossRef]
- Prasad, R.B.N.; Rao, Y.N.; Rao, S.V. Phospholipids of palash (Butea monosperma), papaya (Carica papaya), jangli badam (Sterculia foetida), coriander (Coriandrum sativum) and carrot (Daucus carota) seeds. J. Am. Oil Chem. Soc. 1987, 64, 1424–1427. [Google Scholar] [CrossRef]
- Gunstone, F.D. Vegetable oils. In Bailey's Industrial Oil and Fat Products; Shahidi, F., Ed.; Wiley-Interscience: New York, NY, USA, 2005; pp. 213–267. [Google Scholar]
- Matthaus, B.; Özcan, M.M. Determination of fatty acid, tocopherol, sterol contents and 1,2- and 1,3-diacylglycerols in four different virgin olive oil. J. Food Process. Technol. 2011, 2, 117–120. [Google Scholar] [CrossRef]
- Law, M.R. Plant sterol and stanol margarines and health. West. J. Med. 2000, 173, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Sriti, J.; Talou, T.; Wannes, W.A.; Cerny, M.; Marzouk, B. Essential oil, fatty acid and sterol composition of Tunisian coriander fruit different parts. J. Sci. Food Agric. 2009, 89, 1659–1664. [Google Scholar] [CrossRef]
- Chehade, A.; Bitar, A.E.; Kadri, A.; Choueiri, E.; Nabbout, R.; Youssef, H.; Smeha, M.; Awada, A.; Chami, Z.A.; Dubla, E.; et al. In situ evaluation of the fruit and oil characteristics of the main Lebanese olive germplasm. J. Sci. Food Agric. 2016, 96, 2532–2538. [Google Scholar] [CrossRef] [PubMed]
- Jbara, G.; Jawhar, A.; Bido, Z.; Cardone, G.; Dragotta, A.; Famiani, F. Fruit and oil characteristics of the main Syrian olive cultivars. Ital. J. Food Sci. 2010, 22, 395–400. [Google Scholar]
- Suzuki, Y.J.; Tsuchiya, M.; Wassall, S.R.; Choo, Y.M.; Govil, G.; Kagan, V.E.; Packer, L. Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol: Implication to the molecular mechanism of their antioxidant potency. Biochemistry 1993, 32, 10692–10699. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K.; Khanna, S.; Roy, S. Tocotrienols: Vitamin E beyond tocopherols. Life Sci. 2006, 78, 2088–2098. [Google Scholar] [CrossRef] [PubMed]
- Horvath, G.; Wessjohann, L.; Bigirimana, J.; Jansen, M.; Guisez, Y.; Caubergs, R.; Horemans, N. Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues. Phytochemistry 2006, 67, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Moser, B.R.; Vaughn, S.F. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability. Biomass Bioenergy 2010, 34, 550–558. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.-Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef] [PubMed]
- Sriti, J.; Wannes, W.A.; Talou, T.; Mhamdi, B.; Hamdaoui, G.; Marzouk, B. Lipid, fatty acid and tocol distribution of coriander fruit's different parts. Ind. Crops Prod. 2010, 31, 294–300. [Google Scholar] [CrossRef]
- Sampaio, K.A.; Ayala, J.V.; Silva, S.M.; Ceriani, R.; Verhé, R.; Meirelles, A.J.A. Thermal Degradation Kinetics of Carotenoids in Palm Oil. J. Am. Oil Chem. Soc. 2013, 90, 191–198. [Google Scholar] [CrossRef]
- Daun, J.K. Spectrophotometric analysis of chlorophyll pigments in canola and rapeseed oils. Lipid Technol. 2012, 24, 134–136. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Alimentarius: Fats, Oils and Related Products; Food and Agriculture Organization: Rome, Italy, 2001. [Google Scholar]
- Gunstone, F.D. Canola/rapeseed oil. In Vegetable Oils in Food Technology: Composition, Properties and Uses; Wiley-Blackwell: Chichester, UK, 2011; pp. 107–136. [Google Scholar]
- Erickson, D.R. Edible Fats and Oils Processing: Basic Principles and Modern Practices: World Conference Proceedings; American Oil Chemists’ Society: Champaign, IL, USA, 1990. [Google Scholar]
- Zufarov, O.; Schmidt, Š.; Sekretár, S. Degumming of rapeseed and sunflower oils. Acta Chim. Slovaca 2008, 1, 321–328. [Google Scholar]
- Sampaio, K.A.; Zyaykina, N.; Wozniak, B.; Tsukamoto, J.; De Greyt, W.; Stevens, C.V. Enzymatic degumming: Degumming efficiency versus yield increase. Eur. J. Lipid Sci. Technol. 2015, 117, 81–86. [Google Scholar] [CrossRef]
- ISO. ISO 665:2000, Oilseeds—Determination of Moisture and Volatile Matter Content; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- ISO. ISO 659:2009, Oilseeds—Determination of oil Content; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- AOCS. AOCS Method Ca 5a-40, Free fatty acids. In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- AOCS. AOCS Method Ca 17-01, Trace elements in oil by ICP-OES. In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- AOCS. AOCS Method Ca 20-99, Phosphorus in oil by ICP-OES. In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- AOCS. AOCS Method Cc 13i-96, Chlorophyll pigments (crude vegetable oils). In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- AOCS. AOCS Method Cd 11b-91, Determination of mono- and diglycerides by capillary gas chromatography. In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- AOCS. AOCS Method Ce 2-66, Preparation of methyl esters of fatty acids. In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- Roche, J.; Alignan, M.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Vear, F.; Merah, O. Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chem. 2010, 121, 990–995. [Google Scholar] [CrossRef][Green Version]
- AOCS. AOCS Method Ce 8–89, Tocopherols and tocotrienols in vegetable oil and fats by HPLC. In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- Diehl, B. NMR spectroscopy of natural substances. In NMR Spectroscopy in Pharmaceutical Analysis; Holzgrabe, U., Wawer, I., Diehl, B., Eds.; Elsevier B.V.: Oxford, UK, 2008; pp. 181–200. [Google Scholar]
- Sample Availability: Samples of the compounds coriander vegetable oil and petroselinic acid are available from the authors.
Fatty Acid | Content (%) |
---|---|
C6:0 | 0.1 ± 0.1 |
C16:0 | 2.9 ± 0.1 |
C16:1 | 0.4 ± 0.1 |
C16:1t | 0.2 ± 0.1 |
C16:1c | 0.2 ± 0.1 |
C17:0 | <0.1 |
C18:1t | 0.7 ± 0.1 |
C18:0 | <0.1 |
C18:1n-12 | 72.6 ± 0.4 |
C18:1n-9 | 6.0 ± 0.3 |
C18:1n-7 | 1.2 ± 0.1 |
C18:2 | 13.8 ± 0.3 |
C18:2t | 0.1 ± 0.1 |
C18:2c | 13.7 ± 0.3 |
C18:3 | 0.2 ± 0.1 |
C18:3t | 0.1 ± 0.1 |
C18:3c | 0.1 ± 0.1 |
C20:0 | 0.1 ± 0.1 |
C20:1 | 0.2 ± 0.1 |
SFA | 3.2 ± 0.1 |
MUFA | 81.2 ± 0.4 |
PUFA | 14.0 ± 0.3 |
Identified | 98.3 ± 0.2 |
Sterol | Content (g/kg) |
---|---|
Cholesterol | 0.02 ± 0.01 |
Campesterol | 0.54 ± 0.01 |
Stigmasterol | 1.61 ± 0.02 |
β-Sitosterol | 2.31 ± 0.03 |
Δ5-Avenasterol | 0.27 ± 0.01 |
Δ7-Stigmastenol | 1.22 ± 0.03 |
Δ7-Avenasterol | 0.40 ± 0.01 |
Gramisterol | 0.07 ± 0.01 |
Citrostadienol | 0.10 ± 0.01 |
Cycloartenol | 0.08 ± 0.01 |
Methylene cycloartanol | 0.06 ± 0.01 |
Total sterols | 6.68 ± 0.02 |
Tocol | Coriander Oil | Palm Oil |
---|---|---|
α-tocopherol | 12.4 ± 0.1 | 147.5 |
α-tocotrienol | 98.0 ± 2.0 | 146.8 |
β-tocopherol | n.d. | n.d. |
γ-tocopherol | 10.1 ± 0.2 | 19.5 |
γ-tocotrienol | 350.3 ± 6.7 | 283.0 |
δ-tocopherol | n.d. | n.d. |
δ-tocotrienol | 25.7 ± 0.3 | 49.7 |
Total tocols | 496.5 ± 8.3 | 646.5 |
Phospholipid Subclass | % by Weight |
---|---|
Phosphatidic acid | 32.5 ± 1.0 |
Phosphatidylcholine | 25.4 ± 2.9 |
Phosphatidylinositol | 17.0 ± 4.7 |
Phosphatidylethanolamine | 16.7 ± 2.7 |
Phosphatidyl glycerol | 8.1 ± 0.5 |
1-lysophosphatidylcholine | 0.5 ± 0.3 |
Ca | Fe | K | Mg | Na | P | P from PL (NMR) | HPL | NHPL | P Different Origin |
---|---|---|---|---|---|---|---|---|---|
92.8 ± 0.8 | 1.4 ± 0.1 | 73.1 ± 0.5 | 35.8 ± 0.2 | 5.2 ± 0.1 | 230.7 ± 0.4 | 131.2 ± 8.9 | 75.2 ± 7.8 | 56.4 ± 3.1 | 99.5 ± 8.9 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uitterhaegen, E.; Sampaio, K.A.; Delbeke, E.I.P.; De Greyt, W.; Cerny, M.; Evon, P.; Merah, O.; Talou, T.; Stevens, C.V. Characterization of French Coriander Oil as Source of Petroselinic Acid. Molecules 2016, 21, 1202. https://doi.org/10.3390/molecules21091202
Uitterhaegen E, Sampaio KA, Delbeke EIP, De Greyt W, Cerny M, Evon P, Merah O, Talou T, Stevens CV. Characterization of French Coriander Oil as Source of Petroselinic Acid. Molecules. 2016; 21(9):1202. https://doi.org/10.3390/molecules21091202
Chicago/Turabian StyleUitterhaegen, Evelien, Klicia A. Sampaio, Elisabeth I. P. Delbeke, Wim De Greyt, Muriel Cerny, Philippe Evon, Othmane Merah, Thierry Talou, and Christian V. Stevens. 2016. "Characterization of French Coriander Oil as Source of Petroselinic Acid" Molecules 21, no. 9: 1202. https://doi.org/10.3390/molecules21091202