Next Article in Journal
Panax Notoginseng Saponins as a Novel Nature Stabilizer for Poorly Soluble Drug Nanocrystals: A Case Study with Baicalein
Next Article in Special Issue
Effect of Phyllanthus amarus Extract on 5-Fluorouracil-Induced Perturbations in Ribonucleotide and Deoxyribonucleotide Pools in HepG2 Cell Line
Previous Article in Journal
Mexicanolide-Type Limonoids from the Roots of Trichilia sinensis
Previous Article in Special Issue
Comprehensive Quantitative Analysis of SQ Injection Using Multiple Chromatographic Technologies
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Molecules 2016, 21(9), 1150;

Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis

Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 840, Taiwan
Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan
Authors to whom correspondence should be addressed.
Academic Editor: Thomas Efferth
Received: 12 July 2016 / Revised: 16 August 2016 / Accepted: 24 August 2016 / Published: 30 August 2016
(This article belongs to the Collection Herbal Medicine Research)
Full-Text   |   PDF [940 KB, uploaded 30 August 2016]   |  


The antioxidant and antibacterial activities of wood vinegar from Litchi chinensis, and its components have been studied. The chemical compositions of wood vinegar were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 17 chemical compounds were identified, representing 83.96% of the compositions in the wood vinegar. Three major components, included 2,6-dimethoxyphenol (syringol, 29.54%), 2-methoxyphenol (guaiacol, 12.36%), and 3,5-dimethoxy-4-hydroxytoluene (11.07%), were found in the wood vinegar. Antioxidant activities of the acids were investigated from the aspects of 1,1-Diphyl-2-picrylhydrazyl (DPPH) free radicals scavenging capacity, superoxide anion radical scavenging capacity, and reducing power. The pyroligneous acid exhibited high antioxidant activity which was comparable to the reference standards (vitamin C and butylated hydroxyl toluene) at the same dose with IC50 values of 36.5 ppm calculated by the DPPH radical scavenging assay, 38.38 g Trolox equivalent/100 g DW by the trolox equivalent antioxidant capacity (TEAC) assay, and 67.9 by the reducing power analysis. Antibacterial activity was evaluated using the disc diffusion and microdilution methods against a group of clinically antibiotic resistant isolates. The major components exhibited broad spectrum inhibition against all the bacterial strains with a range of disc inhibition zoon between 15–19 mm. The minimum inhibition concentration and minimum bactericide concentration against the test strains was ranging in 0.95–3.80 μL/100 μL and 1.90–3.80 μL/100 μL, respectively. Most of the antibiotic resistant strains were more susceptible to the wood vinegar than the non-antibiotic resistant strain except the strain of ornithine resistant Staphylococcus aureus. Based on the chemical profile, it was considered that the strongest antioxidant and antibacterial activity of Litchi chinensis wood vinegar was due to its highly phenolic compositions. This study revealed that the Litchi chinensis wood vinegar is valuable to develop as alternative food antioxidant and antibiotics. View Full-Text
Keywords: Litchi chinensis wood vinegar; gas chromatography-mass spectrometry; antibacterial activity; antioxidant activity Litchi chinensis wood vinegar; gas chromatography-mass spectrometry; antibacterial activity; antioxidant activity

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Yang, J.-F.; Yang, C.-H.; Liang, M.-T.; Gao, Z.-J.; Wu, Y.-W.; Chuang, L.-Y. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules 2016, 21, 1150.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top