Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Contents of Total Phenolics and Total Flavonoids in the Different Parts of Lotus Root Varieties
2.2. Contents of Individual Phenolic Compounds in the Different Part of Lotus Root Varieties
2.3. Antioxidant Activities of Phenolic Compounds from the Different Parts of Lotus Root Varieties
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. Extraction of Phenolic Compounds
3.3. Determination of Total Phenolics and Total Flavonoids
3.4. Chromatographic Analysis of Phenolic Compounds
3.5. Evaluation of Antioxidant Activities
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hu, M.; Skibsted, L.H. Antioxidative capacity of rhizome extract and rhizome knot extract of edible lotus (Nelumbo nuficera). Food Chem. 2002, 76, 327–333. [Google Scholar] [CrossRef]
- You, J.S.; Lee, Y.J.; Kim, K.S.; Kim, S.H.; Chang, K.J. Ethanol extract of lotus (Nelumbo nucifera) root exhibits an anti-adipogenic effect in human pre-adipocytes and anti-obesity and anti-oxidant effects in rats fed a high-fat diet. Nutr. Res. 2014, 34, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Shoemaker, C.F. Gelatinization properties of chinese water chestnut starch and lotus root starch. J. Food Sci. 1986, 51, 445–449. [Google Scholar] [CrossRef]
- Xu, Y. Perspectives on the 21st century development of functional foods: Bridging chinese medicated diet and functional foods. Int. J. Food Sci. Technol. 2001, 36, 229–242. [Google Scholar] [CrossRef]
- Guo, H.B. Cultivation of lotus (Nelumbo nucifera Gaertn. Ssp. Nucifera) and its utilization in China. Genet. Resour. Crop Evol. 2008, 56, 323–330. [Google Scholar] [CrossRef]
- Yang, D. Antioxidant Activities of Lotus Rhizome. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2007. [Google Scholar]
- Tsuruta, Y.; Nagao, K.; Shirouchi, B.; Nomura, S.; Tsuge, K.; Koganemaru, K.; Yanagita, T. Effects of lotus root (the edible rhizome of Nelumbo nucifera) on the deveolopment of non-alcoholic fatty liver disease in obese diabetic db/db mice. Biosci. Biotechnol. Biochem. 2012, 76, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Khatua, T.N.; Venkatesh, P.; Saha, B.P.; Mukherjee, P.K. Immunomodulatory potential of rhizome and seed extracts of Nelumbo nucifera gaertn. J. Ethnopharmacol. 2010, 128, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Saha, K.; Pal, M.; Saha, B.P. Effect of nelumbo nucifera rhizome extract on blood sugar level in rats. J. Ethnopharmacol. 1997, 58, 207–213. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Saha, K.; Balasubramanian, R.; Pal, M.; Saha, B.P. Studies on psychopharmacological effects of Nelumbo nucifera gaertn. rhizome extract. J. Ethnopharmacol. 1996, 54, 63–67. [Google Scholar] [CrossRef]
- Yang, W.M.; Shim, K.J.; Choi, M.J.; Park, S.Y.; Choi, B.; Chang, M.S.; Park, S.K. Novel effects of Nelumbo nucifera rhizome extract on memory and neurogenesis in the dentate gyrus of the rat hippocampus. Neurosci. Lett. 2008, 443, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, W.; Zeng, T.; Nie, Q.; Zhang, F.; Zhu, L. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Food Chem. 2015, 177, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, Y.; Xiao, C.; Wang, X.; Tian, Y. Effect of carbon monoxide on browning of fresh-cut lotus root slice in relation to phenolic metabolism. LWT-Food Sci. Technol. 2013, 53, 555–559. [Google Scholar] [CrossRef]
- Wang, Q.; Pen, G.; Jin, Y.; Li, J.; Yan, S. Extraction of polyphenol from lotus roots and its enzymatic browning substrate. J. Anal. Sci. 2014, 20, 38–40. [Google Scholar]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wei, J.; Yang, J.; Li, Y.; Xu, J.; Jiang, Y. The antioxidant capacity of 66 vegetables and fruits: A comparative study. Acta Nutr. Sinica 2003, 25, 203–207. [Google Scholar]
- Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Chen, S.; Fang, L.; Xi, H.; Guan, L.; Fang, J.; Liu, Y.; Wu, B.; Li, S. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry. Anal. Chim. Acta 2012, 724, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, Y.; Fang, J.; Liu, Y.; Li, S. Flavonoids in lotus (Nelumbo) leaves evaluated by hplc-msn at the germplasm level. Food Res. Int. 2013, 54, 796–803. [Google Scholar] [CrossRef]
- Huang, B.; Ban, X.; He, J.; Tong, J.; Tian, J.; Wang, Y. Hepatoprotective and antioxidant activity of ethanolic extracts of edible lotus (Nelumbo nucifera gaertn) leaves. Food Chem. 2010, 120, 873–878. [Google Scholar] [CrossRef]
- Deng, J.; Chen, S.; Yin, X.; Wang, K.; Liu, Y.; Li, S.; Yang, P. Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars. Food Chem. 2013, 139, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, S.; Ibrahim, S.A.; Li, E.; Yang, H.; Huang, W. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages. Food Chem. 2015, 185, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ng, T.B.; Liu, Z.; Wang, C.; Li, N.; Qiao, W.; Liua, F. Immunoregulatory and anti-hiv-1 enzyme activities of antioxidant components from lotus (Nelumbo nucifera gaertn) rhizome. Biosci. Rep. 2010, 31, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lu, S.S.; Xu, Y.; Min, T.; Wang, H.; Yi, Y. Comparison on the content, composition and antioxidant activity of phenolics among different parts of lotus root. J. Wuhan Polytech. Univ. 2015, 34, 20–25. [Google Scholar]
- Liu, H.; Cao, J.; Jiang, W. Evaluation and comparison of vitamin c, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT-Food Sci. Technol. 2015, 63, 1042–1048. [Google Scholar] [CrossRef]
- Li, W.; Liang, H.; Zhang, M.; Zhang, R.; Deng, Y.; Wei, Z.; Zhang, Y.; Tang, X. Phenolic profiles and antioxidant activity of litchi (Litchi chinensis Sonn) fruit pericarp from different commercially available cultivars. Molecules 2012, 17, 14954–14967. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Huang, L.; Zhang, C.; Zhang, Y. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure-activity relationships. J. Funct. Foods 2015, 16, 460–471. [Google Scholar] [CrossRef]
- Zhang, M.W.; Zhang, R.F.; Zhang, F.X.; Liu, R.H. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jiang, L.; Luo, H.; Yu, Z. Establishment of a statistical model for browning of fresh-cut lotus root during storage. Postharvest Biolo. Technol. 2014, 92, 164–171. [Google Scholar] [CrossRef]
- Li, Y. Studies on the technique of extract and purification and its anti-oxidant ability of tannin from nodes of lotus root. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2009. [Google Scholar]
- Wood, L.G.; Gibson, P.G.; Garg, M.L. A review of the methodology for assessing in vivo antioxidant capacity. J. Sci. Food Agric. 2006, 86, 2057–2066. [Google Scholar] [CrossRef]
- Khattak, K.F.; Simpson, T.J.; Ihasnullah. Effect of gamma irradiation on the microbial load, nutrient composition and free radical scavenging activity of Nelumbo nucifera rhizome. Radiat.Phys. Chem. 2009, 78, 206–212. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. J. Func. Foods 2015, 18, 1039–1046. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liang, D.; Zou, Y.; Li, P.; Ma, F. Phenolic compounds and antioxidant activity in red-fleshed apples. J. Func. Foods 2015, 18, 1086–1094. [Google Scholar] [CrossRef]
- Ti, H.; Guo, J.; Zhang, R.; Wei, Z.; Liu, L.; Bai, Y.; Zhang, M. Phenolic profiles and antioxidant activity in four tissue fractions of whole brown rice. RSC Adv. 2015, 5, 101507–101518. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Šulc, M.; Orsák, M.; Pivec, V.; Hejtmánková, A.; Dvořák, P.; Čepl, J. Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem. 2009, 114, 836–843. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (frap) as a measure of “antioxidant power”: The frap assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the phenolic extracts from lotus roots are available from the authors.
Varieties | Total Phenolics Content (mg GAE/g FW) | Total Flavonoids Content (mg RE/g FW) | ||||
---|---|---|---|---|---|---|
Flesh | Peel | Node | Flesh | Peel | Node | |
No. 5 elian | 1.39 ± 0.05 b | 4.97 ± 0.04 h | 6.09 ± 0.06 b | 2.40 ± 0.13 b | 9.26 ± 0.00 f | 12.46 ± 0.72 a |
No. 6 elian | 1.44 ± 0.08 b | 2.80 ± 0.16 a | 6.94 ± 0.12 c | 2.49 ± 0.09 b | 5.35 ± 0.09 a | 15.68 ± 0.28 cd |
No. 7 elian | 1.81 ± 0.04 d | 3.96 ± 0.11 cd | 7.57 ± 0.01 d | 3.02 ± 0.11 cd | 7.03 ± 0.00 bc | 16.12 ± 0.97 d |
No. 8 elian | 1.10 ± 0.06 a | 3.69 ± 0.16 b | 5.27 ± 0.04 a | 1.89 ± 0.10 a | 6.77 ± 0.17 b | 13.98 ± 0.06 b |
Yingcheng Bailian | 1.69 ± 0.03 c | 3.89 ± 0.06 c | 6.95 ± 0.19 c | 3.58 ± 0.03 e | 7.38 ± 0.23 cde | 14.30 ± 0.95 bc |
Zoumayang | 1.90 ± 0.04 de | 4.59 ± 0.07 e | 6.95 ± 0.17 c | 3.30 ± 0.17 de | 7.55 ± 0.20 e | 14.33 ± 0.10 bc |
Guixi Fuou | 2.33 ± 0.07 g | 4.69 ± 0.15 fg | 8.14 ± 0.07 e | 6.33 ± 0.19 g | 9.63 ± 0.12 g | 16.72 ± 0.90 d |
Baheou | 2.52 ± 0.05 h | 4.68 ± 0.07 fg | 6.95 ± 0.08 c | 4.68 ± 0.02 f | 9.11 ± 0.14 f | 14.42 ± 0.28 bc |
Baipaozi | 1.82 ± 0.05 d | 4.68 ± 0.10 fg | 6.27 ± 0.15 b | 3.32 ± 0.13 de | 9.25 ± 0.21 f | 15.82 ± 0.20 cd |
Bobaiou | 1.84 ± 0.04 d | 4.29 ± 0.11 e | 6.85 ± 0.16 c | 3.06 ± 0.14 cd | 7.14 ± 0.20 bcd | 13.29 ± 0.31 ab |
No. 2 Wuzhi | 1.96 ± 0.09 ef | 4.92 ± 0.17 h | 9.80 ± 0.25 g | 3.51 ± 0.18 e | 7.47 ± 0.26 de | 19.34 ± 0.51 e |
8143 | 2.02 ± 0.02 f | 4.14 ± 0.13 de | 8.31 ± 0.10 e | 2.91 ± 0.11 c | 6.69 ± 0.11 bc | 16.11 ± 0.87 d |
Changzhou Piaojiangou | 1.66 ± 0.01 c | 4.54 ± 0.10 f | 9.44 ± 0.16 f | 3.07 ± 0.09 cd | 7.36 ± 0.15 cde | 19.98 ± 0.93 e |
Mean | 1.81 | 4.30 | 7.35 | 3.35 | 7.69 | 15.58 |
Coefficient of variation | 20.87% | 14.01% | 17.54% | 33.33% | 16.36% | 14.05% |
Varieties | Content of Phenolic Compounds (µg/g FW) | |||
---|---|---|---|---|
Gallic Acid | Gallocatechin | Catechin | Epicatechin | |
No. 5 elian | - | 475.22 ± 8.98 | 13.51 ± 0.38 | 11.94 ± 0.39 |
No. 6 elian | 12.18 ± 1.10 | 766.82 ± 26.65 | 18.56 ± 0.65 | 14.18 ± 1.05 |
No. 7 elian | - | 536.42 ± 30.99 | 20.12 ± 1.09 | - |
No. 8 elian | 9.80 ± 1.52 | 770.62 ± 3.01 | 11.07 ± 0.22 | 18.73 ± 0.13 |
Yingcheng Bailian | - | 996.25 ± 94.77 | 24.49 ± 4.33 | - |
Zoumayang | 7.01 ± 0.35 | 896.18 ± 10.91 | 19.71 ± 0.18 | 10.87 ± 1.97 |
Guixi Fuou | - | 1184.79 ± 21.33 | 23.64 ± 0.11 | 11.26 ± 0.23 |
Baheou | 8.82 ± 0.70 | 1150.82 ± 12.95 | 25.02 ± 0.23 | 11.94 ± 0.39 |
Baipaozi | - | 1133.45 ± 12.63 | 17.98 ± 0.41 | 12.03 ± 0.74 |
Bobaiou | - | 856.09 ± 9.93 | 13.09 ± 0.37 | 14.30 ± 0.76 |
No. 2 Wuzhi | - | 923.70 ± 43.71 | 22.01 ± 0.77 | - |
8143 | - | 1125.76 ± 42.30 | 20.08 ± 0.94 | - |
Changzhou Piaojiangou | - | 800.25 ± 5.66 | 16.67 ± 0.68 | - |
Varieties | Content of Phenolic Compounds (µg/g FW) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gallic Acid | p-Cumaric Acid | Gallocatechin | Catechol | Chlorogenic Acid | Catechin | Caffeic Acid | Epicatechin | Rutin | Quercetin | |
No. 5 elian | 29.67 ± 2.61 | 13.79 ± 1.85 | 282.45 ± 16.53 | 7.09 ± 0.46 | - | 21.55 ± 1.37 | 5.91 ± 0.36 | 131.17 ± 9.51 | 34.46 ± 1.91 | - |
No. 6 elian | 53.72 ± 8.64 | - | 280.74 ± 3.67 | 4.10 ± 0.03 | - | 12.48 ± 0.34 | 6.75 ± 0.30 | 151.52 ± 15.35 | 15.57 ± 1.32 | - |
No. 7 elian | 51.14 ± 1.32 | - | 379.02 ± 17.22 | 5.36 ± 0.25 | - | 22.61 ± 2.01 | 6.10 ± 1.09 | 49.68 ± 4.11 | 23.52 ± 2.34 | - |
No. 8 elian | 37.97 ± 3.89 | - | 494.63 ± 5.52 | 5.30 ± 0.07 | - | 20.98 ± 0.18 | 2.96 ± 0.27 | 61.41 ± 3.81 | 46.69 ± 3.79 | 146.77 ± 11.09 |
Yingcheng Bailian | 23.25 ± 1.84 | - | 742.34 ± 68.92 | 6.42 ± 0.11 | - | 27.87 ± 1.49 | - | 29.89 ± 1.06 | 26.14 ± 1.81 | 9.70 ± 0.39 |
Zoumayang | 26.60 ± 3.44 | 86.51 ± 3.08 | 1113.40 ± 123.55 | 4.20 ± 0.37 | 40.59 ± 3.99 | 16.08 ± 0.61 | 5.65 ± 0.37 | 106.84 ± 6.01 | 18.56 ± 1.43 | - |
Guixi Fuou | 4.36 ± 0.60 | - | 1583.30 ± 128.74 | 8.16 ± 1.26 | - | 30.87 ± 3.31 | 2.86 ± 0.26 | 65.20 ± 3.28 | 22.03 ± 0.79 | - |
Baheou | 24.49 ± 1.69 | 42.50 ± 2.46 | 975.24 ± 119.89 | 6.76 ± 0.32 | 46.26 ± 4.82 | 12.72 ± 0.75 | 3.90 ± 0.12 | 63.60 ± 0.81 | 24.52 ± 2.30 | 10.62 ± 0.16 |
Baipaozi | 5.37 ± 0.09 | - | 1088.20 ± 339.46 | 7.28 ± 0.92 | 36.27 ± 0.30 | 22.46 ± 3.72 | 4.75 ± 0.49 | 109.88 ± 9.67 | 23.15 ± 3.17 | - |
Bobaiou | 5.12 ± 0.25 | 47.32 ± 0.11 | 747.94 ± 51.31 | 5.12 ± 0.05 | - | 28.69 ± 1.51 | 3.70 ± 0.11 | 66.50 ± 2.52 | - | 9.94 ± 0.10 |
No. 2 Wuzhi | 13.13 ± 1.54 | - | 747.00 ± 21.21 | 6.66 ± 0.46 | - | 26.62 ± 0.99 | 32.46 ± 0.86 | - | 31.65 ± 1.74 | - |
8143 | 29.74 ± 2.43 | - | 969.20 ± 111.19 | 5.61 ± 0.17 | - | 23.51 ± 2.46 | 1.52 ± 0.05 | 38.56 ± 3.13 | - | - |
Changzhou Piaojiangou | 4.91 ± 0.19 | 11.21 ± 0.70 | 496.93 ± 21.28 | 7.52 ± 0.26 | - | 27.06 ± 1.04 | 2.63 ± 0.08 | 88.96 ± 1.15 | 23.73 ± 0.87 | - |
Varieties | Content of Phenolic Compounds (µg/g FW) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gallic Acid | p-Cumaric Acid | Gallocatechin | Catechol | Chlorogenic Acid | Catechin | Caffeic Acid | Epicatechin | Rutin | Quercetin | |
No. 5 elian | 23.07 ± 2.26 | 14.55 ± 1.65 | 424.64 ± 15.80 | 6.51 ± 0.57 | - | 37.78 ± 2.99 | 1.91 ± 0.20 | 34.40 ± 0.66 | - | - |
No. 6 elian | 37.98 ± 1.27 | 12.04 ± 0.16 | 527.43 ± 2.50 | 7.50 ± 0.15 | - | 37.55 ± 5.36 | 2.87 ± 0.51 | 40.14 ± 0.83 | 10.43 ± 0.50 | - |
No. 7 elian | 34.10 ± 2.82 | - | 436.25 ± 26.90 | 6.82 ± 0.88 | - | 25.63 ± 2.38 | 7.66 ± 1.10 | 18.52 ± 1.45 | - | - |
No. 8 elian | 28.86 ± 3.69 | - | 612.35 ± 53.73 | 8.25 ± 0.54 | - | 33.89 ± 1.07 | - | 18.26 ± 2.00 | 18.05 ± 2.16 | - |
Yingcheng Bailian | 19.72 ± 0.30 | 72.72 ± 3.10 | 1112.38 ± 23.80 | 10.36 ± 0.08 | - | 61.15 ± 1.22 | - | 14.69 ± 1.79 | 25.41 ± 1.25 | - |
Zoumayang | 38.36 ± 2.55 | - | 979.08 ± 18.18 | 6.40 ± 0.49 | 47.67 ± 0.66 | 13.84 ± 0.99 | 1.90 ± 0.18 | 29.22 ± 3.51 | 19.60 ± 2.17 | - |
Guixi Fuou | 48.27 ± 3.94 | - | 1257.40 ± 30.15 | 9.33 ± 0.47 | - | 12.17 ± 0.60 | 4.28 ± 0.48 | 82.89 ± 3.29 | 29.36 ± 1.35 | 9.22 ± 0.16 |
Baheou | 15.50 ± 0.74 | 32.54 ± 2.95 | 883.07 ± 23.84 | 7.72 ± 0.59 | 55.34 ± 5.36 | 42.32 ± 4.19 | 1.96 ± 0.01 | 18.99 ± 0.30 | - | 9.54 ± 0.04 |
Baipaozi | 30.28 ± 2.26 | - | 1411.69 ± 164.69 | 6.22 ± 0.54 | - | 15.18 ± 2.40 | 3.81 ± 1.39 | 38.10 ± 2.69 | - | 11.44 ± 1.11 |
Bobaiou | 5.26 ± 2.35 | 36.02 ± 2.50 | 340.32 ± 29.30 | 8.38 ± 0.86 | - | 35.60 ± 3.84 | 5.24 ± 0.47 | 48.88 ± 1.14 | - | 10.26 ± 0.21 |
No. 2 Wuzhi | 39.65 ± 6.05 | - | 1028.34 ± 45.42 | 5.89 ± 0.19 | 45.30 ± 1.06 | 15.74 ± 1.99 | 6.44 ± 0.35 | 43.91 ± 0.85 | 28.56 ± 1.93 | - |
8143 | 15.66 ± 2.82 | 47.76 ± 4.70 | 897.09 ± 36.42 | 9.15 ± 0.70 | - | 41.56 ± 2.86 | 3.75 ± 0.54 | 31.46 ± 2.78 | 22.00 ± 0.77 | 22.90 ± 4.18 |
Changzhou Piaojiangou | 11.16 ± 2.65 | 64.51 ± 3.94 | 1015.70 ± 39.24 | 9.84 ± 0.76 | - | 41.20 ± 2.73 | 5.24 ± 0.52 | 68.01 ± 7.70 | - | - |
Varieties | IC50 of DPPH Radical Scavenging (µg GAE/mL) | FRAP Antioxidant Activity (µg TE/100 µg GAE) | ||||
---|---|---|---|---|---|---|
Flesh | Peel | Node | Flesh | Peel | Node | |
No. 5 elian | 37.44 ± 1.52 a | 22.37 ± 1.06 ab | 19.04 ± 0.37 a | 79.92 ± 7.31 bc | 92.59 ± 3.78 b | 110.08 ± 3.69 cd |
No. 6 elian | 59.39 ± 1.25 e | 24.80 ± 2.71ab | 18.98 ± 1.38 a | 75.23 ± 2.64 b | 82.88 ± 2.72 ab | 105.70 ± 5.81 bcd |
No. 7 elian | 49.99 ± 0.74 c | 24.11 ± 0.94 ab | 24.07 ± 0.85 b | 86.16 ± 1.44 cd | 84.64 ± 3.84 ab | 106.97 ± 2.80 bcd |
No. 8 elian | 43.36 ± 1.21 b | 23.78 ± 3.08 ab | 21.05 ± 0.02 a | 63.13 ± 1.62 a | 94.15 ± 3.45 b | 107.20 ± 7.31 bcd |
Yingcheng Bailian | 55.04 ± 3.96 d | 51.50 ± 2.05 d | 21.14 ± 1.83 a | 77.71 ± 2.88 b | 92.17 ± 2.87 b | 107.29 ± 10.46 bcd |
Zoumayang | 43.46 ± 2.58 b | 22.95 ± 1.38 ab | 18.74 ± 0.41 a | 94.38 ± 1.92 e | 98.15 ± 9.50 b | 98.74 ± 2.99 bcd |
Guixi Fuou | 42.73 ± 3.49 b | 19.94 ± 0.83 a | 19.96 ± 0.65 a | 74.10 ± 5.81 b | 94.32 ± 5.10 b | 112.32 ± 2.11 d |
Baheou | 37.52 ± 3.13 a | 20.23 ± 1.29 a | 19.66 ± 0.18 a | 91.00 ± 4.32 de | 93.28 ± 6.73 b | 100.59 ± 9.96 bcd |
Baipaozi | 49.55 ± 1.45 c | 25.28 ± 3.62 ab | 24.90 ± 1.64 b | 76.12 ± 5.31 b | 87.35 ± 2.25 ab | 78.78 ± 2.38 a |
Bobaiou | 43.06 ± 0.91 b | 24.61 ± 2.67 ab | 20.42 ± 0.84 a | 65.38 ± 6.05 a | 82.41 ± 4.17 ab | 92.76 ± 8.37 b |
No. 2 Wuzhi | 42.67 ± 1.94 b | 25.86 ± 1.19 b | 24.23 ± 0.70 b | 75.65 ± 1.82 b | 82.20 ± 4.85 ab | 97.19 ± 1.93 bcd |
8143 | 50.03 ± 2.01 c | 30.45 ± 1.53 c | 24.54 ± 0.26 b | 65.83 ± 3.06 a | 73.33 ± 5.86 a | 92.82 ± 3.01 b |
Changzhou Piaojiangou | 43.75 ± 2.79 b | 27.70 ± 1.39 bc | 25.68 ± 1.34 b | 62.18 ± 2.34 a | 82.05 ± 7.47 ab | 95.14 ± 4.61 bc |
Mean | 46.00 | 26.43 | 21.72 | 75.91 | 87.66 | 100.43 |
Coefficient of variation | 14.03% | 30.42% | 11.81% | 13.51% | 8.06% | 9.20% |
Variates | Coefficient of Correlation | |
---|---|---|
IC50 of DPPH Radical Scavenging | FRAP Antioxidant Activity | |
IC50 of DPPH radical scavenging (n = 39) | −0.672 ** | |
FRAP antioxidant activity (n = 39) | −0.672 ** | |
Gallic acid content (n = 30) | −0.308 | 0.274 |
Gallocatechin content (n = 39) | 0.104 | −0.088 |
Catechol content (n = 27) | −0.066 | 0.358 |
Catechin content (n = 39) | −0.332 * | 0.473 ** |
Epicatechin content (n = 34) | −0.433 * | 0.103 |
Classification | Class-I | Class-II | Class-III | |
---|---|---|---|---|
Flesh | TPC (mg GAE/g FW) | 1.86 ± 0.14 a | 1.51 ± 0.31 a | 2.04 ± 0.50 a |
TFC (mg RE/g FW) | 3.17 ± 0.24 a | 2.74 ± 0.72 a | 4.18 ± 1.71 a | |
IC50 of DPPH radical scavenging (µg GAE/mL) | 45.81 ± 3.66 ab | 51.94 ± 6.89 b | 40.29 ± 3.26 a | |
FRAP antioxidant activity (µg TE/100 µg GAE) | 69.03 ± 6.41 a | 75.56 ± 9.51 ab | 84.85 ± 9.46 b | |
Peel | TPC (mg GAE/g FW) | 4.51 ± 0.31 b | 3.58 ± 0.54 a | 4.73 ± 0.16 b |
TFC (mg RE/g FW) | 7.58 ± 0.98 ab | 6.63 ± 0.89 a | 8.89 ± 0.92 b | |
IC50 of DPPH radical scavenging (µg GAE/mL) | 26.78 ± 2.35 a | 31.05 ± 13.64 a | 21.37 ± 1.51 a | |
FRAP antioxidant activity (µg TE/100 µg GAE) | 81.47 ± 5.06 a | 88.46 ± 5.53 ab | 94.58 ± 2.48 b | |
Node | TPC (mg GAE/g FW) | 8.14 ± 1.55 a | 6.68 ± 0.99 a | 7.03 ± 0.84 a |
TFC (mg RE/g FW) | 16.91 ± 2.75 a | 15.02 ± 1.04 a | 14.48 ± 1.74 a | |
IC50 of DPPH radical scavenging (µg GAE/mL) | 23.95 ± 2.05 b | 21.31 ± 2.09 ab | 19.35 ± 0.56 a | |
FRAP antioxidant activity (µg TE/100 µg GAE) | 91.34 ± 7.25 a | 106.79 ± 0.74 b | 105.43 ± 6.76 b |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; Sun, J.; Xie, J.; Min, T.; Wang, L.-M.; Wang, H.-X. Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties. Molecules 2016, 21, 863. https://doi.org/10.3390/molecules21070863
Yi Y, Sun J, Xie J, Min T, Wang L-M, Wang H-X. Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties. Molecules. 2016; 21(7):863. https://doi.org/10.3390/molecules21070863
Chicago/Turabian StyleYi, Yang, Jie Sun, Jun Xie, Ting Min, Li-Mei Wang, and Hong-Xun Wang. 2016. "Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties" Molecules 21, no. 7: 863. https://doi.org/10.3390/molecules21070863