Chemical Compositions and Antioxidant Activities of Polysaccharides from the Sporophores and Cultured Products of Armillaria mellea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of SP, CMP, CFMP and CFBP
Samples | Polysaccharide Yield (%) | Carbohydrate Content (%) |
---|---|---|
SP | 16.89 ± 0.71 b | 68.48 ± 0.14 a |
CMP | 14.20 ± 2.00 a | 57.68 ± 0.20 b |
CFMP | 13.77 ± 1.03 a | 60.35 ± 0.16 b |
CFBP | 24.38 ± 3.34 c | 52.73 ± 3.41 c |
Sample | Xylose (%) | Glucose (%) | Galactose (%) |
---|---|---|---|
SP | 9.80 | 55.83 | 34.37 |
CMP | 19.10 | 46.49 | 34.41 |
CFMP | 20.30 | 44.20 | 35.50 |
CFBP | 31.71 | 24.33 | 43.96 |
Structural Characteristics | Absorption (cm−1) a | |||
---|---|---|---|---|
SP | CMP | CFMP | CFBP | |
O-H stretching vibration | 3388.9 | 3383.7 | 3392.2 | 3386.8 |
C-H stretching vibration | 2932.2 | 2930.7 | 2930.0 | 2931.5 |
bound water | 1600.0 | 1654.7 | 1654.9 | 1658.5 |
C-H bending vibration | 1399.9 | 1417.1 | 1419.2 | 1417.4 |
C-O-C stretching vibration | 1078.9 | 1140.8, 1079.2 | 1151.3, 1079.7 | 1053.8 |
C-O-H bending vibration | 1042.7 | 1026.0 | 1023.0 | 1000.8 |
antisymmetrical ring vibration | 938.5 | 939.8 | 940.2 | 944.8 |
d-galactopyranose/β-d-glucopyranose bending vibration | 882.2 | 884.2 | 887.8 | 874.7 |
symmetrical ring vibration | 750.2 | 764.1 | 762.6 | 774.7 |
2.2. DPPH Radical Scavenging Activity
Sample | IC50 Values (μg/mL) | ||
---|---|---|---|
DPPH• | ABTS•+ | FRAP | |
VC | 7.032 ± 0.006 | 29.82 ± 0.021 | 13.13 ± 0.070 |
BHA | 7.296 ± 0.004 | 15.79 ± 0.107 | 5.867 ± 0.075 |
SP | 223.7 ± 0.011 b | 885.7 ± 0.015 a | 693.7 ± 0.009 b |
CMP | 103.7 ± 0.003 a | 1348 ± 0.040 b | 552.0 ± 0.011 a |
CFMP | 206.0 ± 0.036 b | 1420 ± 0.058 b | 768.2 ± 0.004 c |
CFBP | 322.3 ± 0.030 c | 2118 ± 0.096 c | 996.3 ± 0.009 d |
2.3. ABTS Radical Scavenging Activity
2.4. Ferric-Reduction Antioxidant Power
2.5. Discussion of the Chemical Composition-Activity Relationship
DPPH | ABTS | FRAP | |
---|---|---|---|
DPPH | 1.000 | 0.580 * | 0.931 ** |
ABTS | 0.580 * | 1.000 | 0.799 ** |
FRAP | 0.931 ** | 0.799 ** | 1.000 |
Carbohydrate content | −0.671 *a | −0.915 ** | −0.667 *a |
Xylose percentage | 0.682 * | 0.796 ** | 0.797 ** |
Glucose percentage | −0.616 * | −0.993 ** | −0.803 ** |
Galactose percentage | 0.830 ** | 0.844 ** | 0.883 ** |
DPPH | ABTS | FRAP | ||
---|---|---|---|---|
Carbohydrate content | Y = −1.076ln(X) + 4.560 a | Y = −3.922ln(X) + 17.50 | Y = −2.156ln(X) + 9.480 a | |
Xylose percentage | Y = 0.006X + 0.090 | Y = 0.039X + 0.696 | Y = 0.015X + 0.461 | |
Glucose percentage | Y = −0.04X + 0.396 | Y = −0.036X + 3.008 | Y = −0.011X + 1.230 | |
Galactose percentage | Y = 0.017X − 0.426 | Y = 0.093X − 1.967 | Y = 0.037X − 0.616 |
3. Experimental Section
3.1. Materials and Reagents
3.2. Preparation of Polysaccharides
3.3. Monosaccharide Composition Analysis
3.4. Fourier-Transform Infrared (FT-IR) Spectra Analysis
3.5. Nuclear Magnetic Resonance (NMR) Analysis
3.6. Antioxidant Activity Assays in Vitro
3.6.1. DPPH Radical Scavenging Assay
3.6.2. ABTS Radical Scavenging Assay
3.6.3. Ferric-Reducing Antioxidant Power Assay (FRAP)
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chang, S.T.; Wasser, S.P. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int. J. Med. Mushrooms 2012, 14, 95–134. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, T.W.; Wang, F.; Zhang, J.; Li, C.; Chen, X.N.; Li, Q.; Sun, S.B. A polysaccharide from the fungi of Huaier exhibits anti-tumor potential and immunomodulatory effects. Carbohydr. Polym. 2013, 92, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Zhou, F.; Quan, Y. Antioxidant and immunological activity in vitro of polysaccharides from Phellinus nigricans mycelia. Int. J. Biol. Macromol. 2014, 64, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J; Yu, M.A.; Pyun, Y.R.; Hwang, J.K.; Chu, D.C.; Juneja, L.R.; Mourao, P.A. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thromb. Res. 2013, 112, 151–158. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, Z.Y.; Wang, L.; Walid, E.; Zhang, H. In vitro antioxidant and anti-proliferation activities of polysaccharides from various extracts of different mushrooms. Int. J. Mol. Sci. 2012, 13, 5801–5817. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Wang, C.Y.; Quan, Y. Extraction of polysaccharides from Phellinus nigricans mycelia and their antioxidant activities in vitro. Carbohydr. Polym. 2014, 99, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biot. 2002, 60, 258–274. [Google Scholar] [CrossRef]
- Poloni, D.F.J.; Chapola, H.; Feltes, B.C.; Bonatto, D. The importance of sphingolipids and reactive oxygen species in cardiovascular development. Biol. Cell 2014, 106, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Harrison, I.P.; Selemidis, S. Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets. Clin. Exp. Pharmacol. 2014, 41, 533–542. [Google Scholar] [CrossRef]
- Abdalla, A.E.; Tirzite, D.; Tirzitis, G.; Roozen, J.P. Antioxidant activity of 1, 4-dihydropyridine derivatives in β-carotene-methyl linoleate, sunflower oil and emulsions. Food Chem. 1999, 66, 189–195. [Google Scholar] [CrossRef]
- Soubra, L.; Sarkis, D.; Hilan, C.; Verger, P. Dietary exposure of children and teenagers to benzoates, sulphites, butyl hydroxyanisol (BHA) and butyl hydroxytoluen (BHT) in Beirut (Lebanon). Regul. Toxicol. Pharm. 2007, 47, 68–77. [Google Scholar] [CrossRef]
- Kahl, R.; Kappus, H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z. Lebensm. Unters. Forsch. 1993, 196, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.; Evans, S. The Book of Fungi: A Life-Size Guide to Six Hundred Species from around the World; University of Chicago Press: Chicago, IL, USA, 2011; p. 63. [Google Scholar]
- Editorial Committee of Chinese Materia Medica. Chinese Materia Medica; Science and Technology Press: Shanghai, China, 1999; pp. 566–568. [Google Scholar]
- Gu, Y.J.; Zhang, M.Y.; Tang, H.H.; Zhang, R.Y. Relation between Armillaria mellea and Grifola umbellate, Gastrodia elata and the reasons without artificial domestication on a large scale. Edible Fungi China 2008, 27, 20, 28. [Google Scholar]
- Institute of Materia Medica. Chinese academy of medical sciences. In Modern Study of Chinese Herbal Medicine; Peking Union Medical College and Beijing Medical University Associated Press: Beijing, China, 1995; pp. 48–77. [Google Scholar]
- Josiana, A.V.; Lillian, B.; Anabela, M.; Celestino, S.B.; Vasconcelosb, M.H.; Ferreira, I.C.F.R. Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chem. 2011, 126, 610–616. [Google Scholar] [CrossRef]
- Gao, L.W.; Wang, J.W. Antioxidant potential and DNA damage protecting activity of aqueous extract from Armillaria mellea. J. Food Biochem. 2012, 36, 139–148. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, J.X.; Lang, Y.G.; Yao, L.; Xu, H.; Shi, H.B.; Xu, S.D. A polysaccharide from Armillaria mellea exhibits strong in vitro anticancer activity via apoptosis-involved mechanisms. Int. J. Biol. Macromol. 2012, 51, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Liang, H.T.; Zhang, X.T.; Tong, H.B.; Liu, J.C. Structural elucidation and immunological activity of a polysaccharide from the fruiting body of Armillaria mellea. Bioresour. Technol. 2009, 100, 1860–1863. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.N.; Ng, L.T. Antioxidant and antiedema properties of solid-state cultured honey mushroom, Armillaria mellea (Higher Basidiomycetes), extracts and their polysaccharide and polyphenol contents. Int. J. Med. Mushrooms 2013, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lung, M.Y.; Chang, Y.C. In vitro antioxidant properties of polysaccharides from Armillaria mellea in batch fermentation. Afr. J. Biotechnol. 2011, 10, 7048–7057. [Google Scholar]
- Chen, Q.Q.; Chen, J.C.; Du, H.T.; Li, Q.; Chen, J.; Zhang, G.C.; Liu, H.; Wang, J.R. Structural characterization and antioxidant activities of polysaccharides extracted from the pulp of Elaeagnus angustifolia L. Int. J. Mol. Sci. 2014, 15, 11446–11455. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhang, R.F.; Yi, Y.; Tang, X.J.; Zhang, M.W.; Su, D.X.; Deng, Y.Y.; Wei, Z.C. Comparison of physicochemical properties and immunomodulatory activity of polysaccharides from fresh and dried Litchi Pulp. Molecules 2014, 19, 3909–3925. [Google Scholar] [CrossRef] [PubMed]
- He, J.Z.; Ru, Q.M.; Dong, D.D.; Sun, P.L. Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules 2012, 17, 4373–4387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J. Biochemical Technology of Carbohydrate Complexes; Zhejiang University Press: Hangzhou, China, 1994; pp. 193–198. [Google Scholar]
- Barker, S.A.; Bourne, E.J.; Stacey, M.; Whiffen, D.H. Infra-red spectra of carbohydrates Part I. Some derivatives of d-glucopyranose. J. Chem. Soc. 1954, 15, 171–176. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Nan, H.J.; Liu, Y. Isolation and structural characterisation of Okara polysaccharides. Molecules 2012, 17, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Fan, Y.L.; Wang, W.H.; Liu, N.; Zhang, H.; Zhu, Z.Y.; Liu, A.J. Polysaccharides from Lycium barbarum leaves: Isolation, characterization and splenocyte proliferation activity. Int. J. Biol. Macromol. 2012, 51, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.X.; Zhang, M.; Qu, Z.; Xie, B. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis). Food Chem. 2008, 106, 559–563. [Google Scholar] [CrossRef]
- Wong, K.H.; Sabaratnam, V.; Abdullah, N.; Kuppusamy, U.R.; Naidu, M. Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericiumerinaceus (Bull.: Fr.) Pers. Extracts. Food Technol. Biotechnol. 2009, 47, 1731–1737. [Google Scholar]
- Witkowska, A.M.; Zujko, M.E.; Mirończuk-Chodakowska, I. Comparative study of wild edible mushroom as sources of antioxidant. Int. J. Med. Mushrooms 2011, 13, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Stajić, M.; Vukojević, J.; Knežević, A.; Laušecić, S.D.; Milovanović, I. Antioxidant protective effects of mushroom metabolites. Curr. Top. Med. Chem. 2013, 13, 2660–2676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.N.; Zhao, X.Y.; Sun, C.D.; Li, X.; Chen, K.S. Phenolic composition from different Loquat (Eriobotrya japonica Lindl.) cultivars grown in china and their antioxidant properties. Molecules 2015, 20, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Sevag, M.G.; Lackman, D.B.; Smolens, J. The isolation of the components of streptococcal nucleoproteins in serologically active form. J. Biol. Chem. 1938, 12, 425–436. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [PubMed]
- Hara, S.; Okabe, H.; Mihashi, K. Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine-4(R)-carboxylates. Chem. Pharm. Bull. 1987, 35, 501–506. [Google Scholar] [CrossRef]
- Li, X.L.; Zhou, A.G.; Han, Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro. Carbohyd. Polym. 2006, 66, 34–42. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [PubMed]
- Oyaizu, M. Studies on product of browning reaction prepared from glucose amine. Jap. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the polysaccharides are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, X.; Yan, L.; Zhang, Q.; Zhu, J.; Huang, N.; Wang, Z. Chemical Compositions and Antioxidant Activities of Polysaccharides from the Sporophores and Cultured Products of Armillaria mellea. Molecules 2015, 20, 5680-5697. https://doi.org/10.3390/molecules20045680
Zhang S, Liu X, Yan L, Zhang Q, Zhu J, Huang N, Wang Z. Chemical Compositions and Antioxidant Activities of Polysaccharides from the Sporophores and Cultured Products of Armillaria mellea. Molecules. 2015; 20(4):5680-5697. https://doi.org/10.3390/molecules20045680
Chicago/Turabian StyleZhang, Shanshan, Xiaoqian Liu, Lihua Yan, Qiwei Zhang, Jingjing Zhu, Na Huang, and Zhimin Wang. 2015. "Chemical Compositions and Antioxidant Activities of Polysaccharides from the Sporophores and Cultured Products of Armillaria mellea" Molecules 20, no. 4: 5680-5697. https://doi.org/10.3390/molecules20045680
APA StyleZhang, S., Liu, X., Yan, L., Zhang, Q., Zhu, J., Huang, N., & Wang, Z. (2015). Chemical Compositions and Antioxidant Activities of Polysaccharides from the Sporophores and Cultured Products of Armillaria mellea. Molecules, 20(4), 5680-5697. https://doi.org/10.3390/molecules20045680