Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines
Abstract
:1. Introduction
2. Results and Discussion
Compound | λmax (nm (log ε)) | λem (nm) a | τF (ns) b |
---|---|---|---|
8a | 353 (4.79), 612 (4.50), 680 (5.27) | 692 | 2.6 |
8b | 344 (4.63), 620 (4.40), 685 (5.05) | 700 | 2.3 |
9a | 354 (4.67), 613 (4.39), 681 (5.16) | 693 | 2.7 |
9b | 345 (4.68), 619 (4.46), 686 (5.13) | 699 | 2.3 |
3. Experimental Section
3.1. General Information
3.2. Syntheses
4. Conclusions
Supplementary Material
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McKeown, N.B. Phthalocyanine Materials: Synthesis, Structure and Function; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Soares, A.R.M.; Tomé, J.P.C.; Neves, M.G.P.M.S.; Tomé, A.C.; Cavaleiro, J.A.S.; Torres, T. Synthesis of water-soluble phthalocyanines bearing four or eight d-galactose units. Carbohydr. Res. 2009, 344, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Y.; Lo, P.-C.; Fong, W.-P.; Ng, D.K.P. Effects of the number and position of the substituents on the in vitro photodynamic activities of glucosylated zinc(II) phthalocyanines. Org. Biomol. Chem. 2009, 7, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Kimani, S.G.; Shmigol, T.A.; Hammond, S.; Phillips, J.B.; Bruce, J.I.; MacRobert, A.J.; Malakhov, M.V.; Golding, J.P. Fully Protected Glycosylated Zink (II) Phthalocyanine Shows High Uptake and Photodynamic Cytotoxicity in MCF.7 Cancer Cells. Photochem. Photobiol. 2013, 89, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.O.; Tomé, J.P.C.; Neves, M.G.P.M.S.; Tomé, A.C.; Cavaleiro, J.A.S.; Iamamoto, Y.; Torres, T. [1,2,3,4-Tetrakis(α/β-d-galactopyranos-6-yl)phthalocyaninato]zinc(II): A water-soluble phthalocyanine. Tetrahedron Lett. 2006, 47, 9177–9180. [Google Scholar] [CrossRef]
- Soares, A.R.M.; Neves, M.G.P.M.S.; Tomé, A.C.; Iglesias-de la Cruz, M.C.; Zamarrón, A.; Carrasco, E.; González, S.; Cavaleiro, J.A.S.; Torres, T.; Guldi, D.M.; et al. Glycophthalocyanines as Photosensitizers for Triggering Mitotic Catastrophe and Apoptosis in Cancer Cells. Chem. Res. Toxicol. 2012, 25, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-F.; Huang, J.-D.; Lo, P.-C.; Fong, W.-P.; Ng, D.K.P. Glycosylated zinc(II) phthalocyanines as efficient photosensitisers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Org. Biomol. Chem. 2008, 6, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Micó, X.; Calvete, M.J.F.; Hanack, M.; Ziegler, T. The first example of anomeric glycoconjugation to phthalocyanines. Tetrahedron Lett. 2006, 47, 3283–3286. [Google Scholar] [CrossRef]
- Antoni, P.M.; Naik, A.; Albert, I.; Rubbiani, R.; Gupta, S.; Ruiz-Sanchez, P.; Munikorn, P.; Mateos, J.M.; Luginbuehl, V.; Thamyongkit, P.; et al. (Metallo)porphyrins as Potent Phototoxic Anti-Cancer Agents after Irradiation with Red Light. Chem. Eur. J. 2015, 21, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- DeRosa, M.C.; Crutchley, R.J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371. [Google Scholar] [CrossRef]
- Dąbrowski, J.M.; Arnaut, L.G.; Pereira, M.M.; Urbańska, K.; Simões, S.; Stochel, G.; Cortes, L. Combined effects of singlet oxygen and hydroxyl radical in photodynamic therapy with photostable bacteriochlorins: Evidence from intracellular fluorescence and increased photodynamic efficacy in vitro. Free Radical Biol. Med. 2012, 52, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Usuda, J.; Kato, H.; Okunaka, T.; Furukawa, K.; Tsutsui, H.; Yamada, K.; Suga, Y.; Honda, H.; Nagatsuka, Y.; Ohira, T.; et al. Photodynamic Therapy (PDT) for Lung Cancers. J. Thorac. Oncol. 2006, 1, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.P.; Adelman, R.A. Profile of verteporfin and its potential for the treatment of central serous chorioretinopathy. Clin. Ophthalmol. 2013, 7, 1867–1875. [Google Scholar] [PubMed]
- Teiten, M.H.; Bezdetnaya, L.; Morliere, P.; Santus, R.; Guillemin, F. Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan localisation in cultured tumour cells. Brit. J. Cancer 2003, 88, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Wöhrle, D.; Hirth, A.; Bogdahn-Rai, T.; Schnurpfeil, G.; Shopova, M. Photodynamic therapy of cancer: Second and third generations of photosensitizers. Russ. Chem. Bull. 1998, 47, 807–816. [Google Scholar] [CrossRef]
- Arnaut, L.G.; Pereira, M.M.; Dabrowski, J.M.; Silva, E.F.F.; Schaberle, F.A.; Abreu, A.R.; Rocha, L.B.; Barsan, M.M.; Urbanska, K.; Stochel, G.; et al. Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chem. Eur. J. 2014, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Masilela, N.; Nyokong, T.; Lyubimtsev, A.; Hanack, M.; Ziegler, T. Spectral, photophysical and photochemical properties of tetra- and octaglycosylated zinc phthalocyanines. Photochem. Photobiol. Sci. 2012, 11, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, N.; Jang, W.-D.; Kataoka, K. Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery. New J. Chem. 2007, 31, 1074–1082. [Google Scholar] [CrossRef]
- Zorlu, Y.; Dumoulin, F.; Bouchu, D.; Ahsen, V.; Lafont, D. Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitisers. Tetrahedron Lett. 2010, 51, 6615–6618. [Google Scholar] [CrossRef]
- Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Berthold, H.J.; Franke, S.; Thiem, J.; Schotten, T. Ex Post Glycoconjugation of Phthalocyanines. J. Org. Chem. 2010, 75, 3859–3862. [Google Scholar] [CrossRef] [PubMed]
- Airley, R.E.; Mobasheri, A. Hypoxic Regulation of Glucose Transport, Anaerobic Metabolism and Angiogenesis in Cancer: Novel Pathways and Targets for Anticancer Therapeutics. Chemotherapy 2007, 53, 233–256. [Google Scholar] [CrossRef] [PubMed]
- Crucius, G.; Hanack, M.; Ziegler, T. Synthesis and characterization of [1,4-bis(α,β-galactopyranos-6-yl)phthalocyaninato]zinc(II). J. Porphyrins Phthalocyanines 2013, 17, 807–813. [Google Scholar] [CrossRef]
- Alvarez-Micó, X.; Calvete, M.J.F.; Hanack, M.; Ziegler, T. A new glycosidation method through nitrite displacement on substituted nitrobenzenes. Carbohydr. Res. 2007, 342, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Micó, X.; Calvete, M.J.F.; Hanack, M.; Ziegler, T. Expeditious Synthesis of Glycosylated Phthalocyanines. Synthesis 2007, 14, 2186–2192. [Google Scholar] [CrossRef]
- Hanack, M.; Iqbal, Z.; Lyubimtsev, A.; Özcesmeci, I.; Özcesmeci, M.; Ziegler, T. Synthesis of unusual phthalocyanines and naphthalocyanines. J. Porphyrins Phthalocyanines 2009, 13, 312–321. [Google Scholar] [CrossRef]
- Iqbal, Z.; Hanack, M.; Ziegler, T. Synthesis of an octasubstituted galactose zinc(II) phthalocyanine. Tetrahedron Lett. 2009, 50, 873–875. [Google Scholar] [CrossRef]
- Iqbal, Z.; Lyubimtsev, A.; Hanack, M.; Ziegler, T. Synthesis and characterization of 1,8(11),15(18),22(25)-tetraglycosylated zinc(II) phthalocyanines. J. Porphyrins Phthalocyanines 2010, 14, 494–498. [Google Scholar] [CrossRef]
- Iqbal, Z.; Lyubimtsev, A.; Hanack, M.; Ziegler, T. Anomerically glycosylated zinc(II) naphthalocyanines. Tetrahedron Lett. 2009, 50, 5681–5685. [Google Scholar] [CrossRef]
- Iqbal, Z.; Lyubimtsev, A.; Herrmann, T.; Hanack, M.; Ziegler, T. Synthesis of Octaglycosylated Zinc(II) Phthalocyanines. Synthesis 2010, 2010, 3097–3104. [Google Scholar]
- Lyubimtsev, A.; Iqbal, Z.; Crucius, G.; Syrbu, S.; Ziegler, T.; Hanack, M. Synthesis of glycosylated metal phthalocyanines and naphthalocyanines. J. Porphyrins Phthalocyanines 2012, 16, 434–463. [Google Scholar] [CrossRef]
- Lv, F.; He, X.; Lu, L.; Wu, L.; Liu, T. Synthesis, properties and near-infrared imaging evaluation of glucose conjugated zinc phthalocyanine via Click reaction. J. Porphyrins Phthalocyanines 2012, 16, 77–84. [Google Scholar] [CrossRef]
- Haque, M.E.; Kikuchi, T.; Kanemitsu, K.; Tsuda, Y. Selective Deoxygenation via Regioselective Thioacylation of Non-protected Glycopyranosides by the Dibutyltin Oxide Method. Chem. Pharm. Bull. 1987, 35, 1016–1029. [Google Scholar] [CrossRef]
- Card, P.J.; Reddy, G.S. Fluorinated carbohydrates. 2. Selective fluorination of gluco- and mannopyranosides. Use of 2-D NMR for structural assignments. J. Org. Chem. 1983, 48, 4734–4743. [Google Scholar] [CrossRef]
- Lyubimtsev, A.; Iqbal, Z.; Crucius, G.; Syrbu, S.; Taraymovich, E.S.; Ziegler, T.; Hanack, M. Aggregation behavior and UV-vis spectra of tetra- and octaglycosylated zinc phthalocyanines. J. Porphyrins Phthalocyanines 2011, 15, 39–46. [Google Scholar] [CrossRef]
- Juricek, M.; Kouwer, P.H.J.; Rehak, J.; Sly, J.; Rowan, A.E. A Novel Modular Approach to Triazole-Functionalized Phthalocyanines Using Click Chemistry. J. Org. Chem. 2009, 74, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.R.; Savard, S. Le lithio-2 naphtalene carbonitrile-1 et ses produits de substitutions. Can. J. Chem. 1986, 64, 621–625. [Google Scholar] [CrossRef]
- Pletnev, A.A.; Tian, Q.; Larock, R.C. Carbopalladation of Nitriles: Synthesis of 2,3-Diarylindenones and Polycyclic Aromatic Ketones by the Pd-Catalyzed Annulation of Alkynes and Bicyclic Alkenes by 2-Iodoarenenitriles. J. Org. Chem. 2002, 67, 9276–9287. [Google Scholar] [CrossRef] [PubMed]
- Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar]
- Williams, D.B.G.; Mbatha, G.B. The synthesis and characterisation of carbohydrate-functionalised porphyrazines. Dyes Pigments 2011, 88, 65–74. [Google Scholar] [CrossRef]
- Kalkan, A.; Bayir, Z.A. Synthesis and Characterisation of Unsymmetrical Porphyrazines Containing Bis(hydroxyethylthio) Substituents. Monatsh. Chem. 2003, 134, 1555–1560. [Google Scholar] [CrossRef]
- Tomoda, H.; Saito, S.; Ogawa, S.; Shiraishi, S. Synthesis of Phthalocyanines from Phthalonitrile with Organic Strong Bases. Chem. Lett. 1980, 9, 1277–1280. [Google Scholar] [CrossRef]
- Amano, S.; Takemura, N.; Ohtsuka, M.; Ogawa, S.; Chida, N. Total synthesis of paniculide A from d-glucose. Tetrahedron 1999, 55, 3855–3870. [Google Scholar] [CrossRef]
- Woodward, R.B.; Logusch, E.; Nambiar, K.P.; Sakan, K.; Ward, D.E.; Au-Yeung, B.W.; Balaram, P.; Browne, L.J.; Card, P.J.; Chen, C.H. Asymmetric total synthesis of erythromcin. 1. Synthesis of an erythronolide A secoacid derivative via asymmetric induction. J. Am. Chem. Soc. 1981, 103, 3210–3213. [Google Scholar] [CrossRef]
- Shih-Yuan Lee, A.; Hu, Y.-J.; Chu, S.-F. A simple and highly efficient deprotecting method for methoxymethyl and methoxyethoxymethyl ethers and methoxyethoxymethyl esters. Tetrahedron 2001, 57, 2121–2126. [Google Scholar] [CrossRef]
- Vakalopoulos, A.; Hoffmann, H.M.R. Chelation, Activation, and Proximity Effects in the Deprotection of Dithianes with ZnBr2. Applications in the Polyketide Field. Org. Lett. 2001, 3, 2185–2188. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, H.; Minamitsuji, Y.; Kubo, O.; Senami, K.; Maegawa, T. The reaction of acetal-type protective groups in combination with TMSOTf and 2,2-bipyridyl; mild and chemoselective deprotection and direct conversion to other protective groups. Tetrahedron 2011, 67, 2949–2960. [Google Scholar] [CrossRef]
- Àlvarez Micó, X.; Vagin, S.I.; Subramanian, L.R.; Ziegler, T.; Hanack, M. New Unsymmetrical Zinc-Phthalocyanine Conjugated with One Azo-Dye Moiety: Synthesis via Opening the Fused Triazole Ring and Spectral Properties. Eur. J. Org. Chem 2005, 2005, 4328–4337. [Google Scholar] [CrossRef]
- Chambrier, I.; Cook, M.J.; Mayes, D.A.; MacDonald, C. NMR spectroscopic evidence for the self-association of some asymmetrically substituted phthalocyanines in solution. J. Porphyrins Phthalocyanines 2003, 7, 426–438. [Google Scholar] [CrossRef]
- Terekhov, D.S.; Nolan, K.J.M.; McArthur, C.R.; Leznoff, C.C. Synthesis of 2,3,9,10,16,17,23,24-Octaalkynylphthalocyanines and the Effects of Concentration and Temperature on Their 1H-NMR Spectra. J. Org. Chem. 1996, 61, 3034–3040. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Ogata, H.; Nonaka, N.; Luk’yanets, E.A. Effect of Peripheral Substitution on the Electronic Absorption and Fluorescence Spectra of Metal-Free and Zinc Phthalocyanines. Chem. Eur. J. 2003, 9, 5123–5134. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.B.; Gordon, T.L.; Kenney, M.E. Electronic and redox properties of stacked-ring silicon phthalocyanines from molecular orbital theory. J. Am. Chem. Soc. 1985, 107, 192–195. [Google Scholar] [CrossRef]
- Leznoff, C.C.; Lever, A.B.P. Phthalocyanines: Properties and Applications; Wiley-VCH: New York, NY, USA, 1989; Volume 2. [Google Scholar]
- Zhang, X.-F.; Xi, Q.; Zhao, J. Fluorescent and triplet state photoactive J-type phthalocyanine nano assemblies: controlled formation and photosensitizing properties. J. Mater. Chem. 2010, 20, 6726–6733. [Google Scholar] [CrossRef]
- Saka, E.T.; Göl, C.; Durmuş, M.; Kantekin, H.; Bıyıklıoğlu, Z. Photophysical, photochemical and aggregation behavior of novel peripherally tetra-substituted phthalocyanine derivatives. J. Photochem. Photobiol. A 2012, 241, 67–78. [Google Scholar] [CrossRef]
- Kameyama, K.; Morisue, M.; Satake, A.; Kobuke, Y. Highly Fluorescent Self-Coordinated Phthalocyanine Dimers. Angew. Chem. Int. Ed. 2005, 44, 4763–4766. [Google Scholar] [CrossRef] [PubMed]
- Fennel, F.; Wolter, S.; Xie, Z.; Plötz, P.-A.; Kühn, O.; Würthner, F.; Lochbrunner, S. Biphasic Self-Assembly Pathways and Size-Dependent Photophysical Properties of Perylene Bisimide Dye Aggregates. J. Am. Chem. Soc. 2013, 135, 18722–18725. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhong, C.; Zhang, Z.; Li, Z.; Niu, L.; Bin, Y.; Zhang, F. Photoresponsive J-Aggregation Behavior of a Novel Azobenzene−Phthalocyanine Dyad and Its Third-Order Optical Nonlinearity. J. Phys. Chem. B 2008, 112, 7387–7394. [Google Scholar] [CrossRef] [PubMed]
- Sagitullina, G.P.; Vorontsova, M.A.; Garkushenko, A.K.; Poendaev, N.V.; Sagitullin, R.S. Nitropyridines: X. Palladium-catalyzed cross-coupling of 2-bromo-5-nitropyridine with terminal acetylenes. Russ. J. Org. Chem. 2010, 46, 1830–1834. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bächle, F.; Hanack, M.; Ziegler, T. Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines. Molecules 2015, 20, 18367-18386. https://doi.org/10.3390/molecules201018367
Bächle F, Hanack M, Ziegler T. Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines. Molecules. 2015; 20(10):18367-18386. https://doi.org/10.3390/molecules201018367
Chicago/Turabian StyleBächle, Felix, Michael Hanack, and Thomas Ziegler. 2015. "Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines" Molecules 20, no. 10: 18367-18386. https://doi.org/10.3390/molecules201018367
APA StyleBächle, F., Hanack, M., & Ziegler, T. (2015). Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines. Molecules, 20(10), 18367-18386. https://doi.org/10.3390/molecules201018367