Molecular Dynamics of Neutral Polymer Bonding Agent (NPBA) as Revealed by Solid-State NMR Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of NPBA by 1D 13C CP/MAS NMR Spectroscopy
2.2. 1H-NMR Spectra of NPBA Showing Distinct Dynamics Above and Below the PhaseTransition Temperature
2.3. Site-Specific Dynamics of NPBA Obtained from 13C VT CP/MAS Spectra
2.4. Measurement of the Motion-Averaged 13C CSA
Groups | C-N | C=O | CH3 | CH/CH2 |
---|---|---|---|---|
CSA | 75 ± 8 | 150 ± 20 | 11 ± 2 | 16 ± 2 |
2.5. Rigidity of NPBA Evaluated by the Motion-Averaged 13C-1H Dipolar Coupling
CH2 Groups | Main Chain | Side Chain | |||
---|---|---|---|---|---|
298 K | 333 K | 353 K | 298 K | 333 K | |
ωCH (kHz) | 24.3 | 20.8 | 19.1 | 21.7 | 13.9 |
SCH * | 1.07 | 0.92 | 0.84 | 0.96 | 0.61 |
Motional amplitude (θ) | 0 | 13.4 | 19.1 | 9.4 | 30.7 |
2.6. Structural Perturbation of NPBA upon Aging and Acetone Soaking
3. Experimental
3.1. Sample Preparation
3.2. Solid State NMR Experiment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oberth, A.E. Principle of strength reinforcement in filled rubbers. Rubber Chem. Technol. 1967, 40, 1337–1363. [Google Scholar] [CrossRef]
- Ottewill, R.H.; Schofield, A.B.; Waters, J.A.; Williams, N.S.J. Preparation of core-shell polymer colloid particles by encapsulation. Colloid Polym. Sci. 1997, 275, 274–283. [Google Scholar] [CrossRef]
- Li, G.C.; Xing, Y.G.; Wang, Y.F.; Ding, B. Finite Element Analysis of Interfacial Debonding in Solid Propellants. In Theory and Practice of Energetic Materials; Science Press: Beijing, China, 2007; pp. 731–735. [Google Scholar]
- Ma, C.B.; Qiang, H.F.; Wu, W.M.; Xue, J. Microstructure and damage analysis of solid propellant. In Proceedings of the Third International Conference on Heterogeneous Material Mechanics, Shanghai, China, 22–26 May 2011; pp. 218–221.
- Matous, K.; Inglis, H.M.; Gu, X.; Rypl, D.; Jackson, T.L.; Geubelle, P.H. Multiscale modeling of solid propellants: From particle packing to failure. Compos. Sci. Technol. 2007, 67, 1694–1708. [Google Scholar] [CrossRef]
- Sih, G.C. A model of debonding instability for solid propellant rocket motor 1. Uniform longitudinal and transverse stress rate. Theor. Appl. Fract. Mec. 1996, 24, 93–113. [Google Scholar] [CrossRef]
- Yildirim, H.C.; Ozupek, S. Structural assessment of a solid propellant rocket motor: Effects of aging and damage. Aerosp. Sci. Technol. 2011, 15, 635–641. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.T.; Zhai, P.C.; Liu, L.S.; Shi, H.J. Numerical simulation on the interface debonding in solid propellant under large deformation by a cohesive zone model. Int. J. Mater. Prod. Technol. 2011, 42, 98–109. [Google Scholar] [CrossRef]
- Zhao, J.L. HTPB Propellant Debonding Damage Research. In Advances in Heterogeneous Material Mechanics (Conference); DEStech Publications, Inc.: Lancaster, PA, USA, 2008; pp. 352–355. [Google Scholar]
- Zhao, J.L. Composite Propellant Dewetting Simulation based on Czm Model and Contact Angle Measurements. In Proceedings of the Third International Conference on Heterogeneous Material Mechanics, Shanghai, China, 22–26 May 2011; pp. 1100–1103.
- Kim, H.-S. Filler Reinforcement of Polyurethane Binder Using a Neutral Polymeric Bonding Agent. U.S. Patent 1990. [Google Scholar]
- Kim, H.-S. Improvement of mechanical properties of plastic bonded explosive using neutral polymeric bonding agent. Propell. Explos. Pyrot. 1999, 24, 96–98. [Google Scholar] [CrossRef]
- Landsem, E.; Jensen, T.L.; Hansen, F.K.; Unneberg, E.; Kristensen, T.E. Neutral polymeric bonding agents (npba) and their use in smokeless composite rocket propellants based on HMX-GAP-BuNENA. Propell. Explos. Pyrot. 2012, 37, 581–591. [Google Scholar] [CrossRef]
- Shokri, S.; Afshani, M.E.; Sahafian, A. Improvement of Mechanical Properties in CMDB Propellant by NPBA. In Theory and Practice of Energetic Materials; Science Press: Beijing, China, 2005; pp. 1153–1159. [Google Scholar]
- Yu, Y.; Wang, N.F.; Zhang, P. Deformation Analysis of Free Loading Propellant in Storage. In Theory and Practice of Energetic Materials; Science Press: Beijing, China, 2007; pp. 240–243. [Google Scholar]
- Hong, M. Oligomeric structure, dynamics, and orientation of membrane proteins from solid-state NMR. Structure 2006, 14, 1731–1740. [Google Scholar] [CrossRef]
- McDermott, A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu. Rev. Biophys. 2009, 38, 385–403. [Google Scholar] [CrossRef]
- Hong, M.; Su, Y.C. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Protein Sci. 2011, 20, 641–655. [Google Scholar] [CrossRef]
- Su, Y.C.; Li, S.H.; Hong, M. Cationic membrane peptides: Atomic-level insight of structure-activity relationships from solid-state NMR. Amino Acids 2013, 44, 821–833. [Google Scholar] [CrossRef]
- Krushelnitsky, A.; Reichert, D.; Saalwachter, K. Solid-state NMR approaches to internal dynamics of proteins: From picoseconds to microseconds and seconds. Accounts Chem. Res. 2013, 46, 2028–2036. [Google Scholar] [CrossRef]
- Lewandowski, J.R. Advances in solid-state relaxation methodology for probing site-specific protein dynamics. Accounts Chem. Res. 2013, 46, 2018–2027. [Google Scholar] [CrossRef]
- Laws, D.D.; Bitter, H.M.L.; Jerschow, A. Solid-state NMR spectroscopic methods in chemistry. Angew. Chem. Int. Ed. 2002, 41, 3096–3129. [Google Scholar] [CrossRef]
- Rabone, J.; Yue, Y.F.; Chong, S.Y.; Stylianou, K.C.; Bacsa, J.; Bradshaw, D.; Darling, G.R.; Berry, N.G.; Khimyak, Y.Z.; Ganin, A.Y.; et al. An adaptable peptide-based porous material. Science 2010, 329, 1053–1057. [Google Scholar] [CrossRef]
- Saalwaechter, K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 51, 1–35. [Google Scholar] [CrossRef]
- Sakellariou, D.; le Goff, G.; Jacquinot, J.F. High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning. Nature 2007, 447, 694–697. [Google Scholar] [CrossRef]
- Thomas, J.M.; Raja, R. Exploiting nanospace for asymmetric catalysis: Confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Accounts Chem. Res. 2008, 41, 708–720. [Google Scholar] [CrossRef]
- Spiess, H.W. Structure and dynamics of solid polymers from 2D-NMR and 3D-NMR. Chem. Rev. 1991, 91, 1321–1338. [Google Scholar] [CrossRef]
- Brown, S.P.; Spiess, H.W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 2001, 101, 4125–4155. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Li, S.-H.; Ye, Q.; Cai, H.-L.; Deng, F.; Xiong, R.-G.; Huang, S.D. Ferroelectricity induced by ordering of twisting motion in a molecular rotor. J. Am. Chem. Soc. 2012, 134, 11044–11049. [Google Scholar]
- Sun, Z.; Luo, J.; Zhang, S.; Ji, C.; Zhou, L.; Li, S.; Deng, F.; Hong, M. Solid-State reversible quadratic nonlinear optical molecular switch with an exceptionally large contrast. Adv. Mater. 2013, 25, 4159–4163. [Google Scholar] [CrossRef]
- Fu, D.-W.; Cai, H.-L.; Li, S.-H.; Ye, Q.; Zhou, L.; Zhang, W.; Zhang, Y.; Deng, F.; Xiong, R.-G. 4-Methoxyanilinium Perrhenate 18-Crown-6: A new ferroelectric with order originating in swinglike motion slowing down. Phys. Rev. Lett. 2013, 110, 257601. [Google Scholar] [CrossRef]
- Abdiryim, T.; Jamal, R.; Ubul, A.; Nurulla, I. Solid-State Synthesis of Poly(3 ',4 '-dimethoxy-2,2 ':5 ',2 ''-terthiophene): Comparison With Poly(terthiophene) and Poly(3 ',4 '-ethylenedioxy-2,2 ':5 ',2 ''-terthiophene). Molecules 2012, 17, 8647–8660. [Google Scholar] [CrossRef]
- Honda, H. H-1-MAS-NMR chemical shifts in hydrogen-bonded complexes of chlorophenols (pentachlorophenol, 2,4,6-trichlorophenol, 2,6-dichlorophenol, 3,5-dichlorophenol, and p-chlorophenol) and amine, and H/D isotope effects on H-1-MAS-NMR spectra. Molecules 2013, 18, 4786–4802. [Google Scholar] [CrossRef]
- Saari, A.-L.; Hyvonen, H.; Lahtinen, M.; Ylisirnio, M.; Turhanen, P.; Kolehmainen, E.; Peraniemi, S.; Vepsalainen, J. Systematic study of the physicochemical properties of a homologous series of aminobisphosphonates. Molecules 2012, 17, 10928–10945. [Google Scholar] [CrossRef]
- Hong, M.; Gross, J.D.; Rienstra, C.M.; Griffin, R.G.; Kumashiro, K.K.; Schmidt-Rohr, K. Coupling amplification in 2d mas nmr and its application to torsion angle determination in peptides. J. Magn. Reson. 1997, 129, 85–92. [Google Scholar] [CrossRef]
- Su, Y.; Mani, R.; Doherty, T.; Waring, A.J.; Hong, M. Reversible sheet-turn conformational change of a cell-penetrating peptide in lipid bilayers studied by solid-state NMR. J. Mol. Biol. 2008, 381, 1133–1144. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Clauss, J.; Spiess, H.W. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules 1992, 25, 3273–3277. [Google Scholar] [CrossRef]
- Liu, S.F.; Mao, J.D.; Schmidt-Rohr, K. A robust technique for two-dimensional separation of undistorted chemical-shift anisotropy powder patterns in magic-angle-spinning NMR. J. Magn. Reson. 2002, 155, 15–28. [Google Scholar] [CrossRef]
- Cady, S.D.; Schmidt-Rohr, K.; Wang, J.; Soto, C.S.; DeGrado, W.F.; Hong, M. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 2010, 463, 689–692. [Google Scholar] [CrossRef]
- Gullion, T.; Schaefer, J. Rotational-echo double-resonance NMR. J. Magn. Reson. 1989, 81, 196–200. [Google Scholar]
- Su, Y.; Doherty, T.; Waring, A.J.; Ruchala, P.; Hong, M. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR. Biochemistry 2009, 48, 4587–4595. [Google Scholar] [CrossRef]
- Su, Y.; Hong, M. Conformational disorder of membrane peptides investigated from solid-state NMR line widths and line shapes. J. Phys. Chem. B 2011, 115, 10758–10767. [Google Scholar] [CrossRef]
- Kameda, T.; Tsukada, M. Structure and thermal analyses of maa-grafted silk fiber using dsc and 13c solid-state NMR. Macromol. Mater. Eng. 2006, 291, 877–882. [Google Scholar] [CrossRef]
- Lu, J.; Mirau, P.A.; Tonelli, A.E. Chain conformations and dynamics of crystalline polymers as observed in their inclusion compounds by solid-state NMR. Prog. Polym. Sci. 2002, 27, 357–401. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, L.; Li, S.; Gao, X.; Deng, F. A solid-state NMR study of structure and segmental dynamics of poly(propylmethacryl-heptaisobutyl-pss)-co-styrene nanocomposites. J. Colloid Interf. Sci. 2011, 355, 334–341. [Google Scholar] [CrossRef]
- Gao, X.Z.; Wang, L.Y.; Luo, H.A.; Zou, Q.; Feng, N.D.; Feng, J.W. Crystalline phases in ethylene copolymers studied by solid-state NMR and DSC. Macromolecules 2010, 43, 5713–5722. [Google Scholar] [CrossRef]
- Borsacchi, S.; Martini, F.; Geppi, M.; Pilati, F.; Toselli, M. Structure, dynamics and interactions of complex sol-gel hybrid materials through SSNMR and DSC: Part II, ternary systems based on PE-PEG block copolymer, PHS and silica. Polymer 2011, 52, 4545–4552. [Google Scholar] [CrossRef]
- Pollard, M.; Klimke, K.; Graf, R.; Spiess, H.W.; Wilhelm, M.; Sperber, O.; Piel, C.; Kaminsky, W. Observation of chain branching in polyethylene in the solid state and melt via C-13 NMR spectroscopy and melt NMR relaxation time measurements. Macromolecules 2004, 37, 813–825. [Google Scholar] [CrossRef]
- 13C Chemical shifts. Available online: http://www.science-and-fun.de/tools/13c-nmr.html (accessed on 2 December 2013).
- Castellani, F.; van Rossum, B.; Diehl, A.; Schubert, M.; Rehbein, K.; Oschkinat, H. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 2002, 420, 98–102. [Google Scholar] [CrossRef]
- Cady, S.D.; Goodman, C.; Tatko, C.D.; DeGrado, W.F.; Hong, M. Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: A (2)H, (13)C, and (15)N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J. Am. Chem. Soc. 2007, 129, 5719–5729. [Google Scholar] [CrossRef]
- Mao, J.D.; Schmidt-Rohr, K. Separation of aromatic-carbon 13C NMR signals from di-oxygenated alkyl bands by a chemical-shift-anisotropy filter. Solid State Nucl. Magn. Reson. 2004, 26, 36–45. [Google Scholar] [CrossRef]
- Saitô, H.; Ando, I.; Ramamoorthy, A. Chemical shift tensor—The heart of NMR: Insights into biological aspects of proteins. Prog. Nucl. Magn. Reson. Spectrosc. 2010, 57, 181–228. [Google Scholar] [CrossRef]
- Ye, C.H.; Fu, R.Q.; Hu, J.Z.; Hou, L.; Ding, S.W. C-13 Chemical-shift anisotropies of solid amino-acids. Magn. Reson. Chem. 1993, 31, 699–704. [Google Scholar] [CrossRef]
- Bak, M.; Rasmussen, J.T.; Nielsen, N.C. Simpson: A general simulation program for solid-state nmr spectroscopy. J. Magn. Reson. 2000, 147, 296–330. [Google Scholar] [CrossRef]
- Vinogradov, E.; Madhu, P.K.; Vega, S. High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee-Goldburg experiment. Chem. Phys. Lett. 1999, 314, 443–450. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hu, W.; Su, Y.; Zhou, L.; Pang, A.; Cai, R.; Ma, X.; Li, S. Molecular Dynamics of Neutral Polymer Bonding Agent (NPBA) as Revealed by Solid-State NMR Spectroscopy. Molecules 2014, 19, 1353-1366. https://doi.org/10.3390/molecules19011353
Hu W, Su Y, Zhou L, Pang A, Cai R, Ma X, Li S. Molecular Dynamics of Neutral Polymer Bonding Agent (NPBA) as Revealed by Solid-State NMR Spectroscopy. Molecules. 2014; 19(1):1353-1366. https://doi.org/10.3390/molecules19011353
Chicago/Turabian StyleHu, Wei, Yongchao Su, Lei Zhou, Aimin Pang, Rulin Cai, Xingang Ma, and Shenhui Li. 2014. "Molecular Dynamics of Neutral Polymer Bonding Agent (NPBA) as Revealed by Solid-State NMR Spectroscopy" Molecules 19, no. 1: 1353-1366. https://doi.org/10.3390/molecules19011353