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Abstract: Neutral polymer bonding agent (NPBA) is one of the most promising polymeric 

materials, widely used in nitrate ester plasticized polyether (NEPE) propellant as bonding 

agent. The structure and dynamics of NPBA under different conditions of temperatures and 

sample processing are comprehensively investigated by solid state NMR (SSNMR). The 

results indicate that both the main chain and side chain of NPBA are quite rigid below its 

glass transition temperature (Tg). In contrast, above the Tg, the main chain remains 

relatively immobilized, while the side chains become highly flexible, which presumably 

weakens the interaction between bonding agent and the binder or oxidant fillers and in turn 

destabilizes the high modulus layer formed around the oxidant fillers. In addition, no 

obvious variation is found for the microstructure of NPBA upon aging treatment or 

soaking with acetone. These experimental results provide useful insights for understanding 

the structural properties of NPBA and its interaction with other constituents of solid 

composite propellants under different processing and working conditions. 
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1. Introduction 

Solid propellants of the composite type, a series of heterogeneous energetic materials composed of 

intimately mixed fuel, oxidizer and polymeric binder, have a wide range of applications in the 

chemical, chemical engineering, ordnance and propulsion industries and research communities. As an 

important component, the binding matrix formed between binding agents and curative agents serves as 

the interaction network and assures the mechanical properties of propellants. A good binding matrix 

can maintain the geometric integrity of the propellant ingredients even when subject to severe extreme 

temperature and pressure conditions. Poor performance of the binding matrix, e.g., debonding from the 

solid fillers, greatly compromises the efficiency of propellants. In order to improve the binding ability, 

a small amount of bonding agents is usually incorporated into propellants [1–10]. Ever since the 1960s, 

an array of bonding agents such as aziridine, alkanolamine, polyamine and their derivatives were 

developed for hydroxyl-terminated polybutyldiene (HTPB) propellants. To increase the interface 

bonding strength of polyether binders and nitrate fillers in nitrate ester plasticized polyether (NEPE) 

propellant, the neutral polymeric bonding agent (NPBA) was proposed by Kim et al. in 1990s [11,12]. 

It has repetitive aliphatic main chains and branched side chains of varied lengths, showing strong 

affinity to the polar filters. In addition, the hydroxyl-group rich side chains interact with the binder 

matrix, promoting the interfacial bonding strength, defined as stretching amplitue of the binding 

interface between propellants and linear parts [13,14]. 
Despite many studies characterizing the physical, chemical and mechanical properties of NPBA 

agents, the molecular properties, describing the structural and dynamic basis of their affinity to binding 
matrix, remains largely unknown. For example, the tensile strength of NEPE propellant with NPBA as 
bonding agent decreased significantly when the temperature increased from 298 K to 343 K [15]. Such 
an observation suggests that the glass transition of this polymeric molecule resulting from the 
temperature change modulates its binding function. Thus, it becomes important to investigate the 
dependence of the structure and dynamics on temperature changes, which can provide a mechanistic 
rationale for the compromised performance of NPBA at high temperatures. 

Solid-state NMR (SSNMR) has been proved to be an indispensible technique to investigate the 
microstructural properties and dynamic behaviors of insoluble and non-crystalized biological systems, 
carbohydrate complexes and advanced functional materials [16–34]. Specifically, an array of 
techniques, including DIPSHIFT [35,36], 2D WISE [37], SUPER [38], 2H-NMR [39], REDOR [40,41] 
and relaxation parameters measurements [42], have been well established to investigate the rigidity or 
mobility of a variety of functional (bio-)polymers. In recent years, lots of efforts have been made 
towards better understanding the structure-property relationship of different kinds of polymeric species 
at the atomic or molecular level using SSNMR. For example, Kameda and Tsukada [43] utilized 
versatile SSNMR techniques to investigate the physical properties and chemical structure of silk fibers 
grafted with methacrylamide. The chain conformations and dynamics of crystalline polymers forming 
inclusion compounds have been successfully elucidated by SSNMR [44]. The domain structure and 
mobility of poly(propylmethacryl-heptaisobutyl-pss)-co-styrene nanocomposites with different 
polyhedral oligomeric silsesquioxane (POSS) contents were investigated by SSNMR techniques 
including 2D WISE [37] and spin diffusion [45]. In addition, structures and thermal properties of the 
multiple ordered phases in ethylene-octene and ethylene-butene copolymers have been studied using 
the measurements of 13C chemical shift tensors and NMR relaxation times [46]. 
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In this work, we utilize SSNMR to study the molecular dynamics of NPBA, an efficient bonding 

polymer used in propellants and firstly synthesized by Kim [11], as a function of various temperatures. 

Meanwhile, the structural and dynamic perturbations of NPBA upon aging at high temperatures up to 

423 K are investigated. In addition, we examine the structural change upon the treatment of acetone, 

which is frequently used as a dispersant for NPBA in the synthesis and propellant processing.  

2. Results and Discussion 

2.1. Characterization of NPBA by 1D 13C CP/MAS NMR Spectroscopy  

We firstly obtained the 1D 13C CP/MAS spectrum of NPBA to evaluate the sample homogeneity 

and assign the resonances of various carbon groups. As shown in Figure 1A, the 1D 13C spectrum 

shows characteristic features, including high intensity of CH and CH2 peaks at 20–45 ppm and 

downfield resonances of CN and CO groups, respectively, at 122.0 ppm and 175.8 ppm, in good 

agreement with the structural motif of NPBA. The simple spectral features also suggest that the sample 

is very unlikely to show large inhomogeneity. Based on the characteristic values and studies of 

polymers containing similar functional segments [47,48], all peaks are assigned. The peaks at 29.6 and 

36.1 ppm were respectively attributed to the methine and methylene groups present in the main chain. 

The peak at 122.0 ppm was assigned to the only CN group [49]. The chemical shift at 50.4 ppm could 

be tentatively assigned to the CH group directly bonded to CN. The signal at 175.8 ppm was from 

C=O of the ester groups [50]. The peak at 68.7 ppm was ascribed to methylenes in the side chain. The 

signal at 61.8 ppm was assigned to methyl groups in the methacrylate side chain segment. All assigned 

NMR chemical shifts are indicated in the schematic structure of NPBA in Figure 1B. 

Figure 1. (A) 13C CP/MAS NMR spectra of the NPBA acquired at room temperature and 

under 6 kHz MAS. Asterisks (*) represent spinning sidebands; (B) Schematic molecular 

structure of the NPBA, with assigned chemical shifts for different carbon sites. The broad 

base line at approximately 150 ppm arises from the probe background. The x, y, z values in 

NPBA are ca. 1.0, 0.2, and 0.2, respectively. 
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2.2. 1H-NMR Spectra of NPBA Showing Distinct Dynamics Above and Below the Phase 

Transition Temperature 

In order to investigate the structural perturbation upon heating, we conducted a variable temperature 

(VT) study of NPBA. Figure 2 shows its 1H spectra at five different temperatures of 298 K, 318 K, 333 K, 

353 K and 363 K. As the shared feature, all spectra show a major peak centered at 2.7 ppm along with 

the spinning sidebands and are largely broadened due to the strong 1H homonuclear dipole interaction. 

The central peak clearly experiences line narrowing when the temperature increases from 298 K to 353 K, 

suggesting faster motions at higher temperatures. A significantly narrowed peak is obtained at 353 K 

(Figure 2E). In addition, the broader shoulder decreases with increasing temperature and nearly 

disappears at 353 K. As measured by differential scanning calorimeter (DSC), NPBA shows a glass 

transition temperature, Tg, at approximately 329 K. On one hand, the distinct spectra feature between 

A–B and C–E suggest the faster motion above the Tg. On the other hand, the broad line-width of the 

central peak below Tg indicates stronger 1H-1H dipole interactions, suggesting the higher rigidity of 

NPBA. Since the 1H spectra show the lack of resolution to provide site-specific dynamics, we then 

acquired the 13C-detected CP/MAS spectra of NPBA at various temperatures. 

Figure 2. 1H MAS NMR spectra of NPBA at five different temperatures: (A) 298 K;  

(B) 318 K; (C) 333 K; (D) 353 K and (E) 363 K. 

 

2.3. Site-Specific Dynamics of NPBA Obtained from 13C VT CP/MAS Spectra 

To further study the temperature-dependent dynamic change and probe the structural perturbation at 

high temperatures, 13C-detected VT experiments are carried out. As shown in Figure 3, the chemical 

shifts of different carbon sites remain unchanged upon heating, suggesting a stable structure of NPBA 

below the glass transition. Interestingly, peaks at 68.7 ppm, 122.0 ppm and 175.8 ppm (assigned to 

side-chain CH2, CN and CO, respectively) are well resolved in Figure 3A,B, but become very broad in 

Figure 3D,E. These observations indicate that side chains adopt different motion at temperatures 
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higher than Tg, e.g., likely the intermediate motion interferes with the 1H decoupling and thus gives 

broad lines [31,51]. Alternatively, the side chains could experience conformational disorder at above 

the Tg, resulting in inhomogeneous line broadening. In contrast, the 13C peak of the main-chain CH2 at 

29.6 ppm shows a consistent line width and intensity in spectra acquired above and below the Tg, 

suggesting a relatively rigid polymer backbone in the studied range of temperatures. To quantitatively 

characterize the dynamic behavior of NPBA, we then measured the 13C chemical shift anisotropy 

(CSA) and dipolar coupling of the C-H bond. The comparisons between the motion-averaged strength 

of these spin interactions and the value at a rigid limit can provide better understanding of the 

backbone and side chain motions. 

Figure 3. 13C CP/MAS NMR spectra of NPBA at five different temperatures: (A) 298 K; 

(B) 318 K; (C) 333 K; (D) 353 K and (E) 363 K.  

 

2.4. Measurement of the Motion-Averaged 13C CSA 

The 13C CSA of different groups are measured using a five-pulse scheme developed by Mao et al. [52] 

to examine the dynamics of NPBA at room temperature (see the pulse sequence in Figure 4A). The 

experimental data and numerical fitting for four different groups including CN, CO, CH3 and CH/CH2 

were shown in Figure 4B–E. The CSA simulation results were summarized in Table 1. The CN and 

CO groups have relatively large CSA values at 75 and 150 ppm, compared with the same groups in 

other rigid systems [53,54]. This confirms the rigidity of the side chains of NPBA at room temperature. 

The 13C CSA values of CH/CH2 are intrinsically small and thus not suitable to sense the motion of the 

polymer backbone. To investigate the motion of the main chain at room temperature and the dynamic 

properties of NPBA at temperatures higher than Tg, we measured the dipolar coupling of C-H bonds at 

various temperatures. 
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Figure 4. The pulse sequence (A) and numerical fittings (B–E) of CSA measurements of 

four different carbon sites in NPBA: (A) CN; (B) CO; (C) CH3 and (D) CH/CH2. 

 

Table 1. Simulated CSA values of different carbon groups from Figure 4. The unit of CSA 

values is in ppm. The errors were deduced in the SIMPSON simulations.  

Groups C-N C=O CH3 CH/CH2 

CSA 75 ± 8 150 ± 20 11 ± 2 16 ± 2 

2.5. Rigidity of NPBA Evaluated by the Motion-Averaged 13C-1H Dipolar Coupling 

The C-H dipolar coupling is measured using the DIPSHIFT experiment (Figure 5A), which allows 

the evolution of magnetization under dipolar interaction in one rotor period. The dipolar order 

parameter is the ratio of the measured dipolar coupling to the rigid limit, indicating the amplitude of 

motion (as represented in θ). For example, an order parameter of 1.0 corresponds to the rigid limit 

while a small order parameter near 0 indicates large-amplitude, e.g., isotropic motion. Main chain and 

side chain CH2 peaks at 29.6 ppm and 68.7 ppm, respectively, are well resolved and used to read out 

the intensity that is modulated by C-H dipolar interaction in the DIPSHIFT experiment, as shown in  

Figure 5B–D. The fact that the 13C intensity does not fully recover at the end of the rotor period and 

shows minor decay is due to the apparent T2 decay at a longer time (Figure 5C). The measured 13C-1H 

dipolar coupling (ωCH) and derived order parameters (SCH) are tabulated in Table 2. At 298 K, the 

main-chain and side-chain CH2 have dipolar couplings of 24.3 kHz and 21.7 kHz, respectively, giving 

order parameters close to 1.0. These results indicate the high rigidity of NPBA molecules at room 
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temperature, which agrees well with the finding of the 13C CSA measurement. When it comes to 333 

K, the backbone is still relative rigid (SCH = 0.96 and a small motional angle at 9.4 degrees), while the 

side chain becomes mobile (SCH = 0.61 and a relatively large motional angle at 30.7 degree). At an 

even higher temperature of 353 K, the main chain starts becoming a little bit flexible (SCH = 0.84). 

Taken together, the side chain shows large mobility at above the glass transition temperature, whilst 

the main chain remains relatively rigid in the phase change from 298 K to 353 K. These results are 

consistent with the 13C VT CP/MAS NMR observations in Section 2.3. 

Figure 5. Measurement of motion-averaged 13C-1H dipolar couplings of NPBA. (A) The 

NMR pulse sequence of the DIPSHIFT experiment; (B) Representative 1D projection of 

the DIPSHIFT spectrum, showing the resonances of backbone and side-chain CH2;  

(C) The curve fitting of backbone CH2 data measured at 298 K, 333 K and 353 K;  

(D) Fitted side-chain CH2 data measured at 298 K and 333 K. Time on x-axis refers to the 

evolution time in t1 period. 

 

Table 2. Dipolar order parameters (SCH) of backbone and side-chain CH2 groups measured 

by the 2D 13C-1H DIPSHIFT experiment. The angle of motional amplitudes (θ) is in degree.  

CH2 Groups 
Main Chain Side Chain 

298 K 333 K 353 K 298 K 333 K 

ωCH (kHz) 24.3 20.8 19.1 21.7 13.9 

SCH * 1.07 0.92 0.84 0.96 0.61 

Motional amplitude (θ) 0 13.4 19.1 9.4 30.7 

* The dipolar order parameter, SCH, is the ratio of measured ωCH to the rigid limit of 22.7 kHz, indicating the 

motional amplitude between the motional axis and C-H bond. 
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2.6. Structural Perturbation of NPBA upon Aging and Acetone Soaking 

To investigate the effect of acetone treatment and aging on the structural properties of NPBA, four 

different samples are prepared and used for 13C CP/MAS and 1H measurements shown in Figure 6. 

Surprisingly, no apparent spectral difference is observed by comparing the control (A), acetone-treated 

(B) and aged (C–E) samples. The same consistency is observed for 1H spectra on the right panel of 

Figure 6. Both 13C CP/MAS and 1H spectra suggest that the microstructure of NPBA remains stable 

after various aging and acetone treatments.  

Figure 6. 13C CP/MAS (left panel) and 1H (right panel) spectra of NPBA after acetone 

treatment or aging. (A and A') NPBA without further treatments as the control spectrum. 

(B and B') Acetone-treated NPBA. (C–E and C'–E') NPBA aged for 16 h at different 

temperatures: 333 K (D and D'), 353 K (E and E') and 423 K (F and F'). 

 

3. Experimental 

3.1. Sample Preparation  

Polymer samples were synthesized according to a previous literature report [11]. In brief, 

acrylonitrile, methacrylate and hydroxyethylacrylate were mixed at a desired molar ratio and 

polymerized at 333 K. Azodiisobutyronitrile and mercaptoethanol serve as initiator and molecular 

weight adaptor, respectively. The polymerization reaction lasted for ca. 6 h with stirring and refluxing 

in acetone. After filtration, the solid phase was dehydrated at 323 K for 15 h, giving the NPBA product 

as a white power. The average block length and monomer distribution in the synthesized copolymer 

BPBA is determined to be around 50. The momomer should be randomly distributed in NPBA in 

amorphous forms. The glass transition temperature of the synthesized product is approximately 329 K 

as determined by differential scanning calorimeter (DSC). In order to study the structural perturbation 

of NPBA at different temperatures, three samples were made via conditioning in aging ovens for 12 h 

at temperatures of 333 K, 353 K, and 423 K. In addition, 0.5 g NPBA was immersed in 20 mL acetone 

for 1 h and subsequently dried in the air, for the purpose of determining the stability of NPBA after 

acetone treatment.  
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3.2. Solid State NMR Experiment 

All solid-state NMR experiments were carried out on a Varian Infinityplus-300 spectrometer 

equipped with a 4 mm double-resonance MAS probe. The operating Larmor frequencies are 299.8 and 

75.4 MHz respectively for 1H and 13C nuclei on a 300 MHz spectrometer. Typically, rf (radio 

frequency) field strengths were 35–50 kHz for 13C and 42–83 kHz for the 1H channel. 1H and 13C 

chemical shifts were externally referenced to the adamantine. The 13C cross-polarization magic angle 

spinning (CP/MAS) NMR experiments were conducted using a contact time of 1.5 ms and under  

6 kHz MAS. The 1H MAS NMR spectra were obtained with single pulse at 6.5 kHz MAS.  

The 13C chemical shift anisotropy (CSA) of different samples was determined by using the five-

pulse CSA-recoupling sequence, a robust 13C selecting pulse scheme in use of carbon bonding 

symmetry as introduced by Schmidt-Rohr et al. [52]. In the 13C CSA measurement, there are three π 

pulses in two rotor periods, where the second π pulse is fixed in the middle of one rotor period, 

whereas the delay between the first π pulse and initial as well as the third π pulse to the end were 

varied simultaneously as manifested in the Figure 4. A π pulse length of 10 μs was utilized during the 
13C or 15N CSA measurements. The measurements were conducted under 6 kHz MAS. The CSA 

anisotropy parameter δ for each 13C site were simulated by using the SIMPSON software package [55]. 

In the 13C CSA measurement, there are three π pulses in two rotor periods, where the positions of 

initial and last π pulses vary upon different τ, and the　  second π pulse is fixed in the middle of one 

rotor period. The pulse program is simulated using SIPMSON, which indicates that the fitting 

remarktably depends on the 13C CSA value and is insensitive to Euler angles or asymmetry parameters. 

The motional averaged 13C–1H dipolar couplings were measured using the Dipolar-chemical-shift 

(DIPSHIFT) experiment under 6 kHz MAS [35]. The pulse block of PMLG [56] was used to achieve 
1H homonuclear dipolar decoupling during the rotor period. The TPPM scheme was used to achieve  

80 kHz 13C-1H decoupling. The time domain data were fit to give the apparent dipole coupling values 

and then were divided by PMLG scaling factor to derive the true coupling strength (ωCH). The scaling 

factor of the PMLG decoupling with transverse filed strength of 80 kHz was experimental calibrated to 

be 0.54. 

4. Conclusions  

The performance of NPBA agents relies remarkably on their molecular microstructures and 

interactions to the bonded matrix [11,12]. It has been proposed that the functional groups in the NPBA 

side chain could readily react with the binder. Additionally, the presence of NPBA forms a high 

modulus layer around the oxidant fillers, which eliminate the direct interaction upon dewetting 

between binder matrix and oxidant fillers. This architectural arrangement required for a functional 

propellant could be corrupted under severe conditions, e.g., at high temperatures, due to debonding 

between NPBA and the binder matrix. We utilized solid-state NMR to characterize the structure and 

dynamics of a NPBA polymer at different temperatures and after treatment with acetone and aging. 

The 13C VT CP/MAS spectra and NMR parameters of 13C CSA and SCH show that main chain of the 

studied polymer remains relatively rigid at temperatures up to 333 K. Interestingly, the side chains are 

rigid at room temperature but become mobile at temperatures above Tg. The identified rigidity of 
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NPBA molecule below the Tg presumably provides a structural basis for the stable binding between its 

side chains and binder matrix. At temperatures higher than the Tg, e.g., 333 K, such binding becomes 

weak due to the enhanced mobility of the side chain, as our dynamic results indicated. In addition, the 

flexible side chains at high temperatures result in the reduction of the thickness of the modulus layer 

around the oxidant. The temperature-induced dynamic change of NPBA results in its compromised 

performance at high temperatures. This also suggests that the development of bonding agents with high 

Tg could significantly improve the thermal stability, which is crucial to maintaining the interaction 

between bonding agent and binder matrix. Moreover, even though the NPBA has been aged at 

temperatures above Tg, 
1H and 13C-NMR spectra remains unchanged, indicating that the microstructure of 

NPBA was considerably stable and shows no deformation at high temperatures up to 423 K. NPBA 

also shows no spectroscopic difference before and after soaking with acetone, suggesting the use of 

this organic solvent as dispersant causes no structural perturbation to the NPBA polymer. These 

findings provide a new insight into the storage and production processing of NEPE propellants.  

Most of the previous studies on propellant bonding have mainly focused on engineering properties 

and scarcely emphasized the investigation of the molecular microstructure and dynamics. Here we 

utilize solid-state NMR spectroscopy to characterize the structure and dynamics of a NPBA polymer at 

various temperatures and with different aging and acetone treatments. Our results indicated that both 

the main-chain and side-chain in the microstructure of NPBA remained relatively rigid below Tg, 

whilst the molecular side chains become flexible at higher temperatures. These structural and dynamic 

findings rationalize the stability of NPBA serving as a bonding agent at temperatures below Tg and its 

compromised performance at higher temperatures. Our study has shown that solid-state NMR is a 

robust and efficient analytical technique to characterize the structure and dynamics of NPBA 

polymers. Moreover, the findings provide the insight of improving the mechanical property of NEPE 

propellants at high temperature by increasing the Tg of the bonding agent.  
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