Natural Products as a Source of Anti-Inflammatory Agents Associated with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. The Factors of IBD
2.1. Abnormal Immune Response
2.2. Reactive Oxygen Species
2.3. Microbial Effect
2.4. Nuclear Factor-Kappa B
2.5. iNOS and COX-2
3. Modern Evidence for the Efficacy of Plants on IBD
3.1. Coriolus versicolor
3.2. Brahmi
3.3. Inonotus obliquus
3.4. Cordyceps sinensis
3.5. Prunus mume
3.6. Gardenia jasminoides
3.7. Chrysanthemum indicum
3.8. Benincasa hispida Cogn.
3.9. Avicennia marina
3.10. Patrinia scabiosaefolia
3.11. Ficus bengalensis Linn.
3.12. Ginger (Zingiber officinale)
3.13. Withania somnifera
3.14. Garcinia cambogia
4. In vitro Studies of Plant on IBD Related Factors
5. Conclusions
Study | Plant | Part | Model | Species | Results |
---|---|---|---|---|---|
Debnath et al. [1] | Inonotus obliquus on germinated brown rice | Total mushroom | DSS | Mice | ↓TNF-α, Cox-2, ↓STAT1, STAT6 ↓IFN-γ, IL-4 ↓IgE ↑IgA Prevented shortening of colon and crypt length and epithelial damage |
Cho et al. [2] | Patrinia scabiosaefolia | Root | DSS | ICR mice | ↓Weight loss, diarrhea, gross bleeding, infiltrations of immune cells. ↓TNF-α, IL-1β, and IL-6 mRNA level |
Lim et al. [18] | Coriolus versicolor | Total mushroom | DSS | mice | ↓TNF-α, IL-1β, IL-6 ↓STAT1, STAT6 ↓IFN-γ, IL-4 ↓IgE ↑IgA |
Choi et al. [19] | Inonotus obliquus | Total mushroom | DSS | mice | ↓TNF-α, ↓STAT1, STAT6 |
Jin et al. [20] | Prunus mume | Mixture | DSS | mice | ↓TNF-α, Cox-2, ↓STAT1, STAT6 ↓IFN-γ, IL-4 ↓IgE ↑IgA Prevented shortening of colon and crypt length and epithelial damage |
Yamada et al. [40] | Bacopa monnieri (Brahmi) | Herb | rat | ↓IgA and IgG in the serum | |
Park et al. [42] | Cordyceps sinensis | Mushroom | C57Bl/6N mice | ↓IgE in serum and MLN ↑CD4(+) and CD8(+) proportion in MLN. | |
Han et al. [43] | Cordyceps militaris | Mushroom | DSS | mice | Prevented shortening of colon and crypt length and epithelial damage. |
Liu et al. [51] | Mume Fructus (Prunus mume ) | Fruits | TNBS | Rat | ↓diarrhea, colonic accretion, ulceration, ↑IFN-γ, IL-4 |
Rise et al. [61] | Avicennia marina | Plant | acetic acid | Mice | ↓Colonic lipid peroxides, serum nitric oxide. ↑SOD and glutathione levels |
Patel et al. [63] | Ficus bengalensis | Bark | TNBS | Wistar rats | ↓MPO, MDA, NO ↓SOD |
Hsiang et al [64] | ginger (Zingiber officinale) | Zingerone | TNBS | mice | ↓NF-κB activity and IL-1β signalling pathway |
Pawar et al. [65] | Withania somnifera | Root | TNBS | Rat | Positively scored on histopathological parameters, lipid peroxidation, H2O2 nad NO scavenging activities. |
Rosillo et al. [71] | Punica granatum | Polyphenols | TNBS | Rat | ↓iNOS, COX-2, p38, JNK, pERK1/2, IKBα and nuclear p65 NF-κB |
Jagtap et al. [72] | Bombax malabaricum | Phytochemicals | indomethacin and iodoacetamide, acetic acid | Rat, mice | ↓Ulcer score and MPO ↓TNF-α |
Jung et al. [73] | Apples (Malus spp) | polyphenol | ↓Proinflammatory gene expression | ||
Dost et al. [74] | Garcinia kola | Herb | TNBS | Rat | ↓Colonic damage ↑Antioxidant enzymes |
Study | Plant | Part/extracts | Results |
---|---|---|---|
Debnath et al. [50] | Mume Fructus (Prunus mume) | Fruits | Antioxidant activity |
Debnath et al. [52] | Gardenia jasminoides Ellis | Fruits | Antioxidant activity |
Samad et al. [59] | Benincasa hispida | Seed | Antioxidant activity |
Triebel et al. [75] | Vaccinium myrtillus | Plant | ↓Pro-inflammatory mediators |
Edmunds et al. [76] | Actinidia chinensis Actinidia deliciosa | Fruit | ↓NO and cytokine secretion |
Zia-Ul-Haq et al. [77] | Black gram (Vigna mungo L.), Green gram (Vigna radiate) soybean (Glycine max.) lentil (Lens culinaris Medik) | Seed | ↓COX2, PGE2 |
Mueller et al. [78] | Allspice (Pimenta officinalis) | Fruit | ↓COX2, TNF-alpha and IL-6 ↑IL-10 |
Anise (Pimpinella anisum) | Fruit | ||
Basil (Ocimum basilicum) | Leaves | ||
Bay leaves (Laurus nobilis) | Leaves | ||
Bilberry (Vaccinium myrtillus) | Phenols, (anthocyanins) | ||
Black pepper (Piper nigrum) | Fruit | ||
Cacao (Theobroma cacao) | Seed | ||
Caraway (Carum carvi) | Seed | ||
Cardamom (Elettaria cardamomum) | Seed | ||
Chili pepper (Capsicum annuum) | Fruit | ||
Cinnamon (Cinnamomum cassia) | Bark | ||
Clove (Syzygium aromaticum) | Flower | ||
Coriandrum sativum | Seed | ||
Zingiber officinale | Rhizomes | ||
Lemon grass (Cymbopogon citratus) | Leaves | ||
Licorice (Glycyrrhiza glabra) | Root | ||
Marjoram (Origanum majorana) | Leaves | ||
Nutmeg (Myristica fragrans) | Fruits | ||
Oregano (Origanum onites) | Leaves | ||
Paprika (Capsicum annuum) | Fruits | ||
Rooibos tea (Aspalathus linearis) | Leaves | ||
Rosemary (Rosmarinus officinalis) | Plant | ||
Sage (Salvia officinalis) | Leaves | ||
Jedinak et al. [79] | Oyster mushroom (Pleurotus ostreatus) | Mushroom concentrate | ↓COX-2 and iNOS, ↓NF- κB, AP-1 |
Chiang et al. [80] | Taiwanofungus salmoneus | Mycelia | Antibacterial activity ↓NO, TNF-α |
Ruangnoo et al. [81] | Smilax corbularia | Plant | ↓NO, TNF-α and PGE2 |
Karimi et al. [82] | Labisia pumila var. pumila Labisia pumila var. alata Labisia pumila var. lanceolata | Leaves and roots | ↓NO Antifungul, and anticancer activity |
Khlifi et al. [83] | Artemisia herba-alba, Ruta chalpensis L, Peganum harmala L. | Leaves | Anticancer, Antioxidant (DPPH, ABTS radical scavenging activity) Anti-inflammatory activities (↓iNOS mRNA) |
Jiménez-Estrada et al. [84] | Krameria erecta, Struthanthus palmeri, Phoradendron californicum, Senna covesii Stegnosperma halimifolium | Plant | Anti-oxidant and antiproliferative activities |
Han et al. [85] | Artemisia capillaris | Capillarisin | ↓TNF-α, IL-6, IL-1β, and PGE2 protein expression ↓COX-2 iNOS mRNA expression ↓ERK, JNK, and NF-κB |
Choe et al. [86] | Rhodiola sachalinensis | Phenolic compounds from root | Anti-oxidant activity NO scavenging activity |
Bang et al. [87] | Achyranthes japonica | Root | ↓NO, iNOS, ERK, JNK, P38, NF-κB |
Chae et al. [88] | Hylomecon hylomeconoides | Ethanol extracts | ↓NO, IL-6 , ERK1/2, p38 |
Debnath et al. [89] | Chrysanthemum indicum | Flower | Antioxidant activity |
Acknowledgments
Conflicts of Interest
References
- Debnath, T.; Hasnat, M.A.; Pervin, M.; Lee, S.Y.; Park, S.R.; Kim, D.H.; Kweon, H.J.; Kim, J.M.; Lim, B.O. Chaga mushroom (Inonotus obliquus) grown on germinated brown rice suppresses inflammation associated with colitis in mice. Food Sci. Biotechnol. 2012, 21, 1235–1241. [Google Scholar] [CrossRef]
- Cho, E.-J.; Shin, J.-S.; Noh, Y.-S.; Cho, Y.-W.; Hong, S.-J.; Park, J.-H.; Lee, J.Y.; Lee, J.-Y.; Lee, K.-T. Anti-inflammatory effects of methanol extract of Patrinia scabiosaefolia in mice with ulcerative colitis. J. Ethnopharmacol. 2011, 136, 428–435. [Google Scholar] [CrossRef]
- Jani, N.; Regueiro, M.D. Medical therapy for ulcerative colitis. Gastroenterol. Clin. N. Am. 2002, 31, 147–166. [Google Scholar] [CrossRef]
- Lakatos, P.L.; Lakatos, L. Ulcerative proctitis: A review of pharmacotherapy and management. Expert. Opin. Pharmacother. 2008, 9, 741–749. [Google Scholar] [CrossRef]
- Sergent, T.; Piront, N.; Meurice, J.; Toussaint, O.; Schneider, Y.-J. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem. Biol. Interact. 2010, 188, 659–667. [Google Scholar] [CrossRef]
- Koretz, R.L.; Rotblatt, M. Complementary and alternative medicine in gastroenterology: The good, the bad, and the ugly. Clin. Gastroenterol. Hepatol. 2004, 2, 957–677. [Google Scholar] [CrossRef]
- Kucharzik, T.; Maaser, C.; Lugering, A.; Kagnoff, M.; Mayer, L.; Targan, S.; Domschke, W. Recent understanding of IBD pathogenesis: Implications for future therapies. Inflamm. Bowel. Dis. 2006, 12, 1068–1083. [Google Scholar] [CrossRef]
- Scaldaferri, F.; Fiocchi, C. Inflammatory bowel disease: Progress and current concepts of tiopathogenesis. J. Dig. Dis. 2007, 8, 171–178. [Google Scholar] [CrossRef]
- Ye, B.M.; Lim, B. Dietary Pectin Regulates the Levels of Inflammatory Cytokines and Immunoglobulins in Interleukin-10 Knockout Mice. J. Agric. Food Chem. 2010, 58, 11281–11286. [Google Scholar] [CrossRef]
- Brown, S.J.; Mayer, L. The immune response in inflammatory bowel disease. Am. J.Gastroenterol. 2007, 102, 2058–2069. [Google Scholar] [CrossRef]
- Ince, M.N.; Elliott, D.E. Immunologic and molecular mechanisms in inflammatory bowel disease. Surg. Clin. N. Am. 2007, 87, 681–696. [Google Scholar] [CrossRef]
- Elsässer-Beile, U.; von Kleist, S.; Gerlach, S.; Gallati, H.; Mönting, J.S. Cytokine production in whole blood cell cultures of patients with Crohn’s disease and ulcerative colitis. J. Clin. Lab. Anal. 1994, 8, 447–451. [Google Scholar] [CrossRef]
- Sklyarov, A. Ya.; Panasyuk, N.B.; Fomenko, I.S. Role of nitric oxide-synthase and cyclooxygenase/lipooxygenase systems in development of experimental ulcerative colitis. J. Physiol. Pharmacol. 2011, 62, 65–73. [Google Scholar]
- Hosoi, T.; Goto, H.; Arisawa, T.; Niwa, Y.; Okada, N.; Ohmiya, N.; Hayakawa, T. Role of nitric oxide synthase inhibitor in experimental colitis induced by 2,4,6- trinitrobenzene sulphonic acid in rats. Clin. Exp. Pharmacol. Physiol. 2001, 28, 9–12. [Google Scholar] [CrossRef]
- Martin, A.R.; Villegas, I.; Alarcon, de. La.; Lastra, C. The COX-2 inhibitor, rofecoxib, ameliorates dextran sulphate sodium induced colitis in mice. Inflamm. Res. 2005, 54, 145–151. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J. Anti-inflammatory effects of iridoid glycosides fraction of Folium syringae leaves on TNBSinduced colitis in rats. J. Ethnopharmacol. 2011, 133, 780–787. [Google Scholar] [CrossRef]
- Dionne, S.; D’Agata, D.D.; Hiscott, J.; Vanounou, T.; Seidman, E.G. Colonic explant production of IL-1 and its receptor antagonist is imbalanced in inflammatory bowel disease (IBD). Clin. Exp. Immunol. 1998, 112, 435–442. [Google Scholar] [CrossRef]
- Choi, S.Y.; Hur, S.J.; An, C.S.; Jeon, Y.H.; Jeoung, Y.J.; Bak, J.P.; Lim, B.O. Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate. J. Biomed. Biotechnol. 2010. [Google Scholar] [CrossRef]
- Lim, B.O. Coriolus versicolor Suppresses Inflammatory Bowel Disease by Inhibiting the Expression of STAT1 and STAT6 Associated with IFN-γ and IL-4 Expression. Phytother. Res. 2011, 25, 1257–1261. [Google Scholar] [CrossRef]
- Jin, H.-L.; Lee, B.-R.; Lim, K.-J.; Debnath, T.; Shin, H.-M.; Lim, B.-O. Anti-Inflammatory Effects of Prunus mume Mixture in Colitis Induced by Dextran Sodium Sulfate. Korean J. Med. Crop Sci. 2011, 19, 16–23. [Google Scholar] [CrossRef]
- Rezaie, A.; Parker, R.D.; Abdollahi, M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig. Dis. Sci. 2007, 52, 2015–2021. [Google Scholar] [CrossRef]
- Lih-Brody, L.; Powell, S.R.; Collier, K.P.; Reddy, G.M.; Cerchia, R.; Kahn, E.; Weissman, G.S.; Katz, S.; Floyd, R.A.; McKinley, M.J.; et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig. Dis. Sci. 1996, 41, 2078–2086. [Google Scholar] [CrossRef]
- Jahanshahi, G.; Motavasel, V.; Rezaie, A.; Hashtroudi, A.A.; Daryani, N.E.; Abdollahi, M. Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases. Dig. Dis. Sci. 2004, 49, 1752–1757. [Google Scholar] [CrossRef]
- Cross, R.K.; Wilson, K.T. Nitric oxide in inflammatory bowel disease. Inflamm. Bowel Dis. 2003, 9, 179–89. [Google Scholar] [CrossRef]
- Beckman, K.B.; Ames, B.N. Oxidative decay of DNA. J. Biol. Chem. 1997, 272, 19633–19636. [Google Scholar] [CrossRef]
- Shiratora, Y.; Aoki, S.; Takada, H.; Kiriyama, H.; Ohto, K.; Hai, K.; Teraoka, H.; Matano, S.; Matsumoto, K.; Kamii, K. Oxygen-derived free radical generating capacity of polymorphonuclear cells in patients with ulcerative colitis. Digestion 1989, 44, 163–171. [Google Scholar] [CrossRef]
- Buffinton, G.D.; Doe, W.F. Altered ascorbic acid status in the mucosa from inflammatory bowel disease patients. Free Radic. Res. 1995, 22, 131–143. [Google Scholar] [CrossRef]
- Marteau, P.; Lepage, P.; Mangin, I.; Suau, A.; Doré, J.; Pochart, P.; Seksik, P. Gut Flora and Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2004, 20, 18–23. [Google Scholar]
- Swidsinski, A.; Ladhoff, A.; Pernthaler, A.; Swidsinski, S.; Loening-Baucke, V.; Ortner, M.; Weber, J. ; Hoffmann, U.; Schreiber, S.; Dietel, M.; Lochs, H. Mucosal flora in inflammatory bowel disease. Gastroenterol. 2002, 122, 44–54. [Google Scholar] [CrossRef]
- Rahimi, R.; Nikfar, S.; Rezaie, A.; Abdollahi, M. A meta-analysis of broad-spectrum antibiotic therapy in patients with active Crohn’s disease. Clin. Ther. 2006, 28, 1983–1988. [Google Scholar] [CrossRef]
- Rahimi, R.; Nikfar, S.; Rezaie, A.; Abdollahi, M. A metaanalysis of antibiotic therapy for active ulcerative colitis. Dig. Dis. Sci. 2007, 52, 2920–2925. [Google Scholar] [CrossRef]
- Eshun, K.; He, Q. Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries—a review. Crit. Rev. Food Sci. Nutr. 2004, 44, 91–96. [Google Scholar] [CrossRef]
- Marzorati, M.; Verhelst, A.; Luta, G.; Sinnott, R.; Verstraete, W.; Van de Wiele, T.; Possemiers, S. In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int. J. Food Microbiol. 2010, 139, 168–176. [Google Scholar] [CrossRef]
- Kumar, A.; Takada, Y.; Boriek, A.M.; Aggarwal, B.B. Nuclear factor-kappaB: Its role in health and disease. J. Mol. Med. 2004, 82, 434–448. [Google Scholar]
- Egan, L.J.; Toruner, M. NF-kappaB signaling: Pros and cons of altering NF-kappaB as a therapeutic approach. Ann. NY Acad. Sci. 2006, 1072, 114–122. [Google Scholar]
- Schreiber, S.; Nikolaus, S.; Hampe, J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 1998, 42, 477–484. [Google Scholar] [CrossRef]
- Andresen, L.; Jørgensen, V.L.; Perner, A.; Hansen, A.; Eugen-Olsen, J.; Rask-Madsen, J. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 2005, 54, 503–509. [Google Scholar] [CrossRef]
- Beck, P.L.; Xavier, R.; Wong, J.; Ezedi, I.; Mashimo, H.; Mizoguchi, A.; Mizoguchi, E.; Bhan, A.K.; Podolsky, D.K. Paradoxical roles of different nitric oxide synthase isoforms in colonic injury. Am. J. Physiol. 2004, 286, G137–G147. [Google Scholar]
- Singh, V.; Patil, C.; Jain, N.; Singh, A.; Kulkarni, S.K. Effect of nimesulide on acetic acid- and leukotriene-induced inflammatory bowel disease in rats. Prostaglandins Other Lipid Mediat. 2003, 71, 163–175. [Google Scholar] [CrossRef]
- Yamada, K.; Hung, P.; Park, T.K.; Park, P.J.; Lim, B.O. A comparison of the immunostimulatory effects of the medicinal herbs Echinacea, Ashwagandha and Brahmi. J. Ethnopharmal. 2011, 137, 231–235. [Google Scholar] [CrossRef]
- Debnath, T.; Park, D.K.; Lee, B.R.; Jin, H.L.; Lee, S.Y.; Samad, N.B.; Lim, B.O. Antioxidant activity of Inonotus obliquus grown on germinated brown rice extracts. J. Food Biochem. 2011. [Google Scholar] [CrossRef]
- Park, D.K.; Choi, W.S.; Park, P.J.; Kim, E.K.; Jeong, Y.J.; Choi, S.Y.; Yamada, K.; Kim, J.D.; Lim, B.O. Immunoglobulin and cytokine production from mesenteric lymph node lymphocytes is regulated by extracts of Cordyceps sinensis in C57Bl/6N mice. J. Med. Food. 2008, 11, 784–788. [Google Scholar] [CrossRef]
- Han, E.S.; Oh, J.Y.; Park, H.-J. Cordyceps militaris extract suppresses dextran sodium sulfate-induced acute colitis in mice and production of inflammatory mediators from macrophages and mast cells. J. Ethnopharmacol. 2011, 134, 703–710. [Google Scholar] [CrossRef]
- Chuda, Y.; Ono, H.; Ohnishi-Kameyama, M.; Matsumoto, K.; Nagata, T.; Kikuchi, Y. Mumefural, Citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). J. Agric. Food Chem. 1999, 47, 828–883. [Google Scholar] [CrossRef]
- Miyazawa, M.; Utsunomiya, H.; Inada, K.-I.; Yamada, T.; Okuno, Y.; Tanaka, H; Tatematsu, M. Inhibition of Helicobacter pylori motility by (+)-syringaresinol from unripe Japanese apricot. Biol. Pharm. Bull. 2006, 29, 172–173. [Google Scholar] [CrossRef]
- Yingsakmongkon, S.; Miyamoto, D.; Sriwilaijaroen, N.; Fujita, K.; Matsumoto, K.; Jampangern, W.; Hiramatsu, H.; Guo, C.-T.; Sawada, T.; Takahashi, T.; et al. In vitro inhibition of human influenza A virus infection by fruit-juice concentrate of Japanese plum (Prunus mume SIEB. et ZUCC). Biol. Pharm. Bull. 2008, 31, 511–515. [Google Scholar] [CrossRef]
- Jeong, J.T.; Moon, J.-H.; Park, K.-H.; Shin, C.S. Isolation and characterization of a new compound from Prunus mume fruit that inhibits cancer cells. J. Agric. Food Chem. 2006, 54, 2123–2128. [Google Scholar] [CrossRef]
- Shi, J.; Gong, J.; Liu, L.; Wu, X.; Zhan, Y. Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components. Food Sci. Technol. 2009, 42, 477–482. [Google Scholar]
- Chen, R.-Y.; Yang, H.-T.; Tsai, M.-J.; Lin, S.-B. Antioxidant activity and amygdalin contents of Mei (Prunus mume seibu. et Zucc.) flower and fruit water extract at different maturity. Taiwan J. Agric. Chem. Food Sci. 2006, 44, 390–396. [Google Scholar]
- Debnath, T.; Bak, J.P.; Samad, N.B.; Jin, H.L.; Lee, B.M.; Lim, B.O.J. Antioxidant activity of mume fructus extract. Food Biochem. 2012, 36, 224–232. [Google Scholar]
- Liu, L.; Yuan, S.; Sun, Y.; Long, Y.; Li, Y.; Niu, Y.; Li, C.; Gan, H.; Cao, S.; Meia, Q. The possible mechanisms of Fructus Mume pill in the treatment of colitis induced by 2,4,6-trinitrobenzene sulfonic acid in rats. J. Ethnopharmacol. 2009, 126, 557–564. [Google Scholar] [CrossRef]
- 52. Debnath, T.; Pyo-Jam Park, P. -J.; Deb Nath, N.C.; Samad, N.B.; Park, H.W.; Lim, B.O. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food. Chem. 2011, 128, 697–703. [Google Scholar] [CrossRef]
- Oh, P.S.; Lim, K.T. Plant originated glycoprotein has anti-oxidative and anti-inflammatory effects on dextran sulfate sodium-induced colitis in mouse. J. Biomed.Sci. 2006, 13, 549–560. [Google Scholar] [CrossRef]
- Cheng, W.; Li, J.; You, T.; Hu, C. Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linné. J. Ethnopharmacol. 2005, 101, 334–337. [Google Scholar] [CrossRef]
- Shunying, Z.; Yang, Y.; Huaidong, Y.; Yue, Y.; Guolin, Z. Chemical composition and antimicrobial activity of the essentialoils of Chrysanthemum indicum. J. Ethnopharmacol. 2005, 96, 151–158. [Google Scholar] [CrossRef]
- Lee, K.-H.; Choi, H.-R.; Kim, C.-H. Anti-angiogenic effect of the seed extract of Benincasa hispida Cogniaux. J. Ethnopharmacol. 2005, 97, 509–513. [Google Scholar] [CrossRef]
- Yoshizumi, S.; Murakami, T.; Kadoya, M.; MAtsuda, H.; yamahara, J.; Yoshikawa, M. Medicinal foodstuffs. XI. Histamine release inhibitors from wax gourd, the fruits of Benincasa hispida Cogn. Yakugaku Zasshi 1998, 118, 188–192. [Google Scholar]
- Huang, H.-Y.; Huang, J.-J.; Tso, T.K.; Tsai, Y.-C.; Chang, C.-K. Antioxidant and angiotension-converting enzyme inhibition capacities of various parts of Benincasa hispida (wax gourd). Nahrung 2004, 48, 230–233. [Google Scholar] [CrossRef]
- Samad, N.B.; Debnath, T.; Jin, H.L.; Lee, B.R.; Park, P.J.; Lee, S.Y.; Lim, B.O. Antioxidant activity of benincasa hispida seeds. Food Biochem. 2011. [Google Scholar] [CrossRef]
- Rachchh, M.A.; Jain, S.M. Gastroprotective effect of Benincasa hispida fruit extract. Indian J. Pharmacol. 2008, 40, 271–275. [Google Scholar] [CrossRef]
- Rise, C.L.; Prabhu, V.V.; Guruvayoorappan, C. Effect of marine mangrove Avicennia marina (Forssk.) Vierh against acetic acid-induced ulcerative colitis in experimental mice. J. Environ. Pathol. Toxicol. Oncol. 2012, 31, 179–192. [Google Scholar] [CrossRef]
- Shin, M.K. Clinical Traditional Herbalogy; Young-Lim Press: Seoul, Korea, 1998; pp. 564–565. [Google Scholar]
- Patel, M.A.; Patel, P.K.; Patel, M.B. Effects of ethanol extract of Ficus bengalensis (bark) on inflammatory bowel disease. Indian J. Pharmacol. 2010, 42, 214–218. [Google Scholar] [CrossRef]
- Hsiang, C.Y.; Lo, H.Y.; Huang, H.C.; Li, C.C.; Wu, S.L.; Ho, T.Y. Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-κB activity and interleukin-1β signalling pathway. Food Chem. 2013, 136, 170–177. [Google Scholar] [CrossRef]
- Pawar, P.; Gilda, S.; Sharma, S.; Jagtap, S.; Paradkar, A.; Mahadik, K.; Ranjekar, P.; Harsulkar, A. Rectal gel application of Withania somnifera root extract expounds anti-inflammatory and muco-estorative activity in TNBS-induced inflammatory bowel disease. BMC Complement Altern. Med. 2011, 28, 11–34. [Google Scholar]
- dos Reis, S.B.; de Oliveira, C.C.; Acedo, S.C.; Miranda, D.D.; Ribeiro, M.L.; Pedrazzoli, J., Jr.; Gambero, A. Attenuation of colitis injury in rats using Garcinia cambogia extract. Phytother. Res. 2009, 23, 324–329. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, W.; Han, W.; Yeo, J.-H.; Wang, M.-H. Antioxidant and nitric oxide production inhibitory activities of scouring rush (Equisetu hyemale L.). Food Sci. Biotechnol. 2012, 21, 1037–1044. [Google Scholar] [CrossRef]
- Tae, K.-S.; Kim, S.-J. Inhibition of iNOS and DNA oxidation by methanol extract of Schizonepeta tenuifolia. Trop. J. Pharm. Res. 2012, 11, 397–404. [Google Scholar]
- Shen, C.C.; Lin, C.-F.; Huang, Y.-L.; Wan, S.-T.; Chen, C.-C.; Sheu, S.-J.; Lin, Y.-C.; Chen, C.-C. Bioactive Components from the Mycelium of Antrodia salmonea. J. Chin. Chem. Soc. 2008, 55, 854–857. [Google Scholar]
- Huang, G.J.; Pan, C.H.; Liu, F.C.; Wu, T.S.; Wu, C.H. Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246.7 macrophages and the λ-carrageenan-induced paw edema model. Food Chem. Toxicol. 2012, 50, 1485–1493. [Google Scholar] [CrossRef]
- Rosillo, M.A.; Sánchez-Hidalgo, M.; Cárdeno, A.; Aparicio-Soto, M.; Sánchez-Fidalgo, S.; Villegas, I.; de la Lastra, C.A. Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol Res. 2012, 66, 235–242. [Google Scholar] [CrossRef]
- Jagtap, A.G.; Niphadkar, P.V.; Phadke, A.S. Protective effect of aqueous extract of Bombax malabaricum DC on experimental models of inflammatory bowel disease in rats and mice. Indian J. Exp. Biol. 2011, 49, 343–351. [Google Scholar]
- Jung, M.; Triebel, S.; Anke, T.; Richling, E.; Erkel, G. Influence of apple polyphenols on inflammatory gene expression. Mol. Nutr. Food Res. 2009, 53, 263–280. [Google Scholar]
- Dost, T.; Ozkayran, H.; Gokalp, F.; Yenisey, C.; Birincioglu, M. The effect of Hypericum perforatum (St. John’s Wort) on experimental colitis in rat. Dig. Dis. Sci. 2009, 54, 1214–1221. [Google Scholar] [CrossRef]
- Triebel, S.; Trieu, H.L.; Richling, E. Modulation of inflammatory gene expression by a bilberry (Vaccinium myrtillus L.) extract and single anthocyanins considering their limited stability under cell culture conditions. J. Agric. Food Chem. 2012, 60, 8902–8910. [Google Scholar] [CrossRef]
- Edmunds, S.J.; Roy, N.C.; Love, D.R.; Laing, W.A. Kiwifruit extracts inhibit cytokine production by lipopolysaccharide-activated macrophages, and intestinal epithelial cells isolated from IL10 gene deficient mice. Cell Immunol. 2011, 270, 70–79. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Landa, P.; Kutil, Z.; Qayum, M.; Ahmad, S. Evaluation of anti-inflammatory activity of selected legumes from Pakistan: in vitro inhibition of cyclooxygenase-2. Pak. J. Pharm Sci. 2013, 26, 185–187. [Google Scholar]
- Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010, 122, 987–996. [Google Scholar] [CrossRef]
- Jedinak, A.; Dudhgaonkar, S.; Wu, Q.-L.; Simon, J.; Sliva, D. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-kB and AP-1 signaling. Nutr. J. 2011, 16, 10–52. [Google Scholar]
- Chiang, S.S.; Wang, L.T.; Chen, S.Y.; Mau, J.L. Antibacterial and Anti-Inflammatory Activities of Mycelia of a Medicinal Mushroom from Taiwan, Taiwanofungus salmoneus (Higher Basidiomycetes). Int. J. Med. Mushrooms. 2013, 15, 39–47. [Google Scholar] [CrossRef]
- Ruangnoo, S.; Jaiaree, N.; Makchuchit, S.; Panthong, S.; Thongdeeying, P.; Itharat, A. An in vitro inhibitory effect on RAW 264.7 cells by anti-inflammatory compounds from Smilax corbularia Kunth. Asian Pac. J. Allergy Immunol. 2012, 30, 268–274. [Google Scholar]
- Karimi, E.; Jaafar, H.Z.; Ahmad, S. Antifungal, Anti-inflammatory and cytotoxicity activities of three varieties of labisia pumila benth: from microwave obtained extracts. BMC Complement Altern. Med. 2013. [Google Scholar] [CrossRef] [Green Version]
- Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013, 55, 202–208. [Google Scholar] [CrossRef]
- Jiménez-Estrada, M.; Velázquez-Contreras, C.; Garibay-Escobar, A.; Sierras-Canchola, D.; Lapizco-Vázquez, R.; Ortiz-Sandoval, C.; Burgos-Hernández, A.; Robles-Zepeda, R.E. In vitro antioxidant and antiproliferative activities of plants of the ethnopharmacopeia from northwest of Mexico. BMC Complement. Altern. Med. 2013. [Google Scholar] [CrossRef]
- Han, S.; Lee, J.H.; Kim, C.; Nam, D.; Chung, W.S.; Lee, S.G.; Ahn, K.S.; Cho, S.K.; Cho, M.; Ahn, K.S. Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-κB activation. Immunopharmacol. Immunotoxicol. 2013, 35, 34–42. [Google Scholar] [CrossRef]
- Choe, K.I.; Kwon, J.H.; Park, K.H.; Oh, M.H.; Kim, M.H.; Kim, H.H.; Cho, S.H.; Chung, E.K.; Ha, S.Y.; Lee, M.W. The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of Rhodiola sachalinensis A. BOR. Molecules 2012, 17, 11484–11494. [Google Scholar] [CrossRef]
- Bang, S.Y.; Kim, J.H.; Kim, H.Y.; Lee, Y.J.; Park, S.Y.; Lee, S.J.; Kim, Y. Achyranthes japonica exhibits anti-inflammatory effect via NF-κB suppression and HO-1 induction in macrophages. J. Ethnopharmacol. 2012, 144, 109–117. [Google Scholar] [CrossRef]
- Chae, H.S.; Kang, O.H.; Keum, J.H.; Kim, S.B.; Mun, S.H.; Seo, Y.S.; Kim, M.R.; Choi, J.G.; Shin, D.W.; Oh, Y.C.; et al. Anti-inflammatory effects of Hylomecon hylomeconoides in RAW 264.7 cells. Eur. Rev. Med. Pharmacol. Sci. 2012, 3, 121–125. [Google Scholar]
- Debnath, T.; Jin, H.L.; Hasnat, M.D.; Kim, Y.; Samad, N.B.; Park, P.-J.; Lim, B.O. Antioxidant potential and oxidative DNA damage preventive activity of Chrysanthemum indicum. J. Food Biochem. 2011. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Debnath, T.; Kim, D.H.; Lim, B.O. Natural Products as a Source of Anti-Inflammatory Agents Associated with Inflammatory Bowel Disease. Molecules 2013, 18, 7253-7270. https://doi.org/10.3390/molecules18067253
Debnath T, Kim DH, Lim BO. Natural Products as a Source of Anti-Inflammatory Agents Associated with Inflammatory Bowel Disease. Molecules. 2013; 18(6):7253-7270. https://doi.org/10.3390/molecules18067253
Chicago/Turabian StyleDebnath, Trishna, Da Hye Kim, and Beong Ou Lim. 2013. "Natural Products as a Source of Anti-Inflammatory Agents Associated with Inflammatory Bowel Disease" Molecules 18, no. 6: 7253-7270. https://doi.org/10.3390/molecules18067253