Effects of a Novel Poly (AA-co-AAm)/AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil and Wheat Seedling Growth
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PHNC
FTIR Spectroscopy
2.2. Effect of PHNC on Moisture Retention in Soil
2.3. Effect of PHNC on Soil pH and Electrical Conductivity (EC)
2.4. Effect of PHNC on Soil Bulk Density and Porosity
2.5. Effect of PHNC on Hydraulic Conductivity
2.6. Seed Germination and Seedling Growth of Wheat
Nanocomposite level (%) | Seed germination (%) | Shoot length (cm) | Shoot fresh weight (mg) | Shoot dry weight (mg) |
---|---|---|---|---|
0 | 80.20 ± 1.61 a | 15.24 ± 1.74 b | 85.75 ± 2.10 c | 16.11 ± 1.82 b |
0.1 | 91.50 ± 1.72 ab | 21.76 ± 1.83 ab | 92.75 ± 3.45 b | 22.45 ± 1.92 b |
0.2 | 92.00 ± 1.75 a | 24.61 ± 2.10 ab | 112.75 ± 3.26 a | 26.50 ± 1.81 a |
0.3 | 96.40 ± 2.10 ab | 27.36 ± 2.05 a | 131.75 ± 4.25 a | 29.20 ± 2.30 a |
0.4 | 98.10 ± 2.25 ab | 29.80 ± 2.27 a | 162.00 ± 505 ab | 35.42 ± 2.61 ab |
2.7. Effect of PHNC on Permanent Wilting Point
2.8. General Discussion
3. Experimental
3.1. Materials
3.2. Methods
3.2.1. Synthesis of Nano-sized AlZnFe2O4
3.2.2. Synthesis of PHNC
3.2.3. Physical Characterization
3.2.4. Measurement of the Water-Retention Properties in Sandy Loam Soil
3.2.5. Soil pH and EC Measurement
3.2.6. Measurement of Bulk Density and Porosity
3.2.7. Evaluation of Hydraulic Conductivity
3.2.8. Determination of Permanent Wilting Point
3.2.9. Determination of Total Available Water
3.2.10. Seed Germination and Seedling Growth Assessment in Amended Soil
3.2.11. Statistical Analysis
4. Conclusions
Acknowledgements
References
- Zhang, J.; Chen, P.H.; Li, P.; Wang, A.Q. Study on superabsorbent composite, Preparation of poly (acrylic acid)/organo-attapulgite composite hydrogels and swelling behaviors in aqueous electrolyte solution. Macromol. Mater. Eng. 2006, 291, 1529–1538. [Google Scholar] [CrossRef]
- Akhter, J.; Mahmood, K.; Malik, K.A.; Mardan, A.; Ahmad, M.; Iqbal, M.M. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Environ. 2004, 50, 463–469. [Google Scholar]
- Bromberg, L. Polyether-Modified Poly (acrylic acid): Synthesis and Applications. Ind. Eng. Chem. Res 1998, 37, 4267–4274. [Google Scholar]
- Henderson, J.C.; Hensley, D.L. Ammonium and nitrate retention by a hydrophilic gel. HortScience 1985, 20, 667–668. [Google Scholar]
- Ingram, D.L.; Yeager, T.H. Effect of irrigation frequency and a water-absorbing polymer amendment on Ligustrum growth and moisture retention by a container medium. J. Environ. Hort. 1987, 5, 19–21. [Google Scholar]
- Zohuriaan, M.J.; Kabiri, K. Superabsorbent Polymer Materials: A Review. Iran. Polym. J. 2008, 17, 451–477. [Google Scholar]
- Spagnol, C.; Rodrigues, F.H.A.; Neto, A.G.V.C.; Pereira, A.G.B.; Fajardo, A.R.; Rubira, E.A.F.; Muniz, E.C. Nano composites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur. Polym. J. 2012, 48, 454–463. [Google Scholar] [CrossRef]
- Spagnol, C.; Rodrigues, F.H.A.; Pereira, A.G.B.; Fajardo, A.R.; Rubira, A.F.; Muniz, E.C. Superabsorbent hydrogel nanocomposite based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 2012, 19, 1225–1237. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, R.; Li, A.; Wang, A. Preparation, Swelling Behaviors, and Slow-Release Properties of a Poly(acrylic acid-co-acrylamide)/Sodium Humate Superabsorbent Composite. Ind. Eng. Chem. Res. 2006, 45, 48–54. [Google Scholar]
- Yang, C.M.; Wang, M.H.; Lu, Y.F.; Chang, I.F.; Chou, C.H. Humic Substances affect the activity of chlorophyllase. J. Chem. Ecol. 2004, 30, 1057–1065. [Google Scholar] [CrossRef]
- Fong, S.S.; Seng, L.; Mat, H.B. Reuse of Nitric Acid in Oxidative Step for Preparation of Humic Acids from low rank coal of Mukah, Sarawak. J. Braz. Chem. Soc. 2007, 18, 41–46. [Google Scholar] [CrossRef]
- Amjad, A.S.A.; Khanif, Y.M.A.; Aminuddin, H.A.; Radziah, O.A.; Osumanu, H.A. Impact of potassium humate on selected chemical properties of an Acidic soil. In Proceedings of 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010.
- Bulut, Y.; Akcay, G.; Elma, D.; Serhatli, I.E. Synthesis of clay-based superabsorbent composite and its sorption capability. J. Hazard. Mater. 2009, 171, 717–723. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, A.Q. Study on superabsorbent composites. IX: Synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React. Funct. Polym. 2007, 67, 737–45. [Google Scholar] [CrossRef]
- Cakmak, I. Identification and Correction of Widespread Zn Deficiency in Turkey: A Success Story; Proc. Fertilizer Soc.: York, UK, 2004. [Google Scholar]
- Alloway, B.J. Zinc in Soils and Crop Nutrition, 2nd ed; IFA: Brussels, Belgium and Paris, France, 2008. [Google Scholar]
- Shaver, T.; Westfall, D.G. Validity of Zinc fertilizer efficiency ratios. Technical Bulletin TB-08-04. Colorado State University: Fort Collins, CO, USA, 2008. [Google Scholar]
- Chu, M.; Zhu, S.Q.; Huang, Z.B.; Li, H.M. Influence of potassium humate on the swelling properties of a poly (acrylic acid-co-acrylamide)/potassium humate superabsorbent composite. J. Appl. Polym. Sci. 2008, 107, 3727–3373. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, Q.; Wang, A.Q. Synthesis and characterization of chitosan-g-poly (acrylic acid)/sodium humate superabsorbent. Carbohyd. Polym. 2007, 70, 166–173. [Google Scholar] [CrossRef]
- Zhang, J.P.; Li, A.; Wang, A.Q. Study on superabsorbent composite. V. Synthesis, swelling behaviors and application of poly (acrylic acid-co-acrylamide)/sodium humate/attapulgite superabsorbent composite. Polym. Adv. Technol. 2005, 16, 813–820. [Google Scholar] [CrossRef]
- Seki, Y.; Torgursul, A.; Yurdakoc, K. Preparation and characterization of poly(acrylic acid)-iron rich smectite superabsorbent composites. Polym. Adv. Technol. 2007, 18, 477–482. [Google Scholar]
- Dorraji, S.S.; Golchin, A.; Ahmadi, S. The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils. Clean Soil Air Water 2010, 38, 584–591. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Bai, W.; Zhang, H.; Liu, B.; Wu, Y.; Song, J. Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use Manag. 2010, 26, 253–260. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Shainberg, I.; Goldstein, D.; Warrington, D.N.; Levy, G.J. Water retention and hydraulic conductivity of crosslinked polyacrylamides in sandy soils. Soil Sci. Soc. Am. J. 2007, 71, 406–412. [Google Scholar]
- El-Shafei, Y.Z.; Al-Omran, A.M.; Al-Darby, A.A. Shalaby Influence of upper layer treatment of gel-conditioner on water movement in sandy soils under sprinkler infiltration. Arid Soil Res. Rehabil. 1992, 6, 217–231. [Google Scholar] [CrossRef]
- Ghering, J.A.; Lewis, A.J. Effects hydrogels on wilting and moisture stress of bedding plants. J. Am. Soc. Hortic. Sci. 1980, 105, 511–513. [Google Scholar]
- Taylor, K.C.; Halfacre, R.G. the effect of hydrophilic polymer on media water retention and nutrient availability to Ligustrum lucidum. HortScience 1986, 21, 1159–1161. [Google Scholar]
- Kayaa, M.D.; Okcu, G.M.; Atak, C.; Çıkılı, Y.; Kolsarıcı, O. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annulus L.). Eur. J. Agron. 2006, 24, 291–295. [Google Scholar] [CrossRef]
- Shahid, S.A.; Qidwai, A.A.; Anwar, F.; Ullah, I.; Rashid, U. Improvement in water retention characteristics of sandy loam soil using newly synthesized poly (Acrylamide-co-Acrylic Acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules 2012, 17, 9397–9412. [Google Scholar]
- El-Fayoumy, M.E.; Ramadan, H.M. Effect of bio-organic manure on sandy soils amelioration and peanut productivity under sprinkler irrigation system. Egypt J. Soil Sci. 2002, 42, 383–415. [Google Scholar]
- Abo-Zied, M.M.A.; Habashy, N.R.; Anas, A.A.W. Utilization of some organic polymers and humic acids for improving a sandy soil productivity of peanut and their residual effects on the next crop of faba bean. Fayoum J. Agric. Res. Dev. 2005, 9, 42–55. [Google Scholar]
- Mackowiak, C.L.; Grossl, P.R.; Bugbee, B.G. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci. Soc. Am. J. 2001, 65, 1744–1750. [Google Scholar]
- Prasad, B.; Sinha, P. Change in the status of micronutrients in soil with long term application of chemical fertilizers, lime and manure. Plant Soil 1982, 64, 437–441. [Google Scholar]
- Natesan, R.; Kandasamy, S.; Thiyageshwari, S.; Murugesa, B.P. Influence of lignite humic acid on the micronutrient availability and yield of blackgram in an alfisol. In Proceedings of 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006.
- Chen, S.K.; Edwards, C.A.; Subler, S. The influence of two agricultural bio-stimulants on nitrogen transformations, microbial activity, and plant growth in soil microcosms. Soil Biol. Biochem. 2003, 35, 9–19. [Google Scholar] [CrossRef]
- Madlain, M.; Salib, M. The integrated effect of humic acid and micronutrients in combination with effective micro-organisms on wheat and peanut grown on sandy soils. Zagazig J. Agric. Res. 2002, 29, 2033–2050. [Google Scholar]
- Ullah, I.; Ali, S.; Hanif, M.A.; Shahid, S.A. Nanoscience for environmental remediation: A Review. Int. J. Chem. Biochem. Sci. 2012, 2, 60–77. [Google Scholar]
- Dutta, H.; Sinha, M.; Lee, Y.C.; Pradhan, S.K. Microstructure characterization and phase transformation kinetics of ball mill prepared nanocrystalline Mg-Zn ferrite by Rietveld’s analysis and electron microscopy. Mater. Chem. Phys. 2007, 105, 31–37. [Google Scholar] [CrossRef]
- Sinha, M.; Dutta, H.; Pradhan, S.K. X-ray characterization and phase transformation kinetics of ball mill prepared nanocrystalline Mg-Zn ferrite at elevated temperatures. Physica E Low Dimens. Syst. Nanostruct. 2006, 33, 367–369. [Google Scholar] [CrossRef]
- Liu, Z.S.; Rempel, G.L. Preparation of super absorbent polymers by crosslinking acrylic acid and acrylamide copolymers. J. Appl. Polym. Sci. 1997, 64, 1345–1353. [Google Scholar]
- Wu, J.H.; Lin, J.M.; Li, G.Q.; Wei, C.R. Influence of the COOH and COONa groups and crosslink density of poly (acrylic acid)/montmorillonite superabsorbent composite on water absorbency. Polym. Int. 2001, 50, 1050–1053. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Amini-Fazl, M.S.; Ayyari, M. Optimization of synthetic conditions CMC-g-poly (acrylic acid)/Celite composite superabsorbent by Taguchi method and determination of its absorbency under load. Express Polym. Lett. 2007, 1, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Moutier, M.; Shainberg, I.; Levy, G.J. Hydraulic gradient and wetting rate effects on the hydraulic conductivity of two calcium vertisols. Soil Sci. Soc. Am. J. 2000, 64, 1211–1219. [Google Scholar]
- Ley, T.W.; Stevens, R.G.; Topielec, R.R.; Neibling, W.H. Soil Water Monitoring and Measurement: A Pacific Northwest Publication PNW0475; Washington State University: Pullman, WA, USA, 1994. [Google Scholar]
- Sample Availability: Samples of the compound poly(Acrylic-Acid-co-acrylamide)AlZnFe2O4/K-H can be available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shahid, S.A.; Qidwai, A.A.; Anwar, F.; Ullah, I.; Rashid, U. Effects of a Novel Poly (AA-co-AAm)/AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil and Wheat Seedling Growth. Molecules 2012, 17, 12587-12602. https://doi.org/10.3390/molecules171112587
Shahid SA, Qidwai AA, Anwar F, Ullah I, Rashid U. Effects of a Novel Poly (AA-co-AAm)/AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil and Wheat Seedling Growth. Molecules. 2012; 17(11):12587-12602. https://doi.org/10.3390/molecules171112587
Chicago/Turabian StyleShahid, Shaukat Ali, Ansar Ahmad Qidwai, Farooq Anwar, Inam Ullah, and Umer Rashid. 2012. "Effects of a Novel Poly (AA-co-AAm)/AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil and Wheat Seedling Growth" Molecules 17, no. 11: 12587-12602. https://doi.org/10.3390/molecules171112587
APA StyleShahid, S. A., Qidwai, A. A., Anwar, F., Ullah, I., & Rashid, U. (2012). Effects of a Novel Poly (AA-co-AAm)/AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil and Wheat Seedling Growth. Molecules, 17(11), 12587-12602. https://doi.org/10.3390/molecules171112587