Irving-Williams Order in the Framework of Connectivity Index 3χv Enables Simultaneous Prediction of Stability Constants of Bivalent Transition Metal Complexes
Abstract
:1. Introduction
2. Methods
2.1. Calculation of topological indices
2.2. Regression calculations
2.3. Stability constants selection
3. Results and Discussion
Metal/Ligand | log K1 | log β2 | References |
---|---|---|---|
Cu/Glycine | 8.57 | 15.63 | [32,33,34,35] |
Ni/Glycine | 6.15 | 11.15 | [32,33] |
Co/Glycine | 5.09 | 9.10 | [32,33] |
Fe/Glycine | 4.30 | 7.80 | [36] |
Mn/Glycine | 3.55 | 6.63 | [32,33] |
Cu/Alanine | 8.41 | 15.21 | [32,33,37,38] |
Ni/Alanine | 5.96 | 10.66 | [33] |
Co/Alanine | 4.83 | 8.55 | [32,33,39] |
Fe/Alanine | 7.30 | [39] | |
Mn/Alanine | 3.13 | 6.05 | [32,33] |
Cu/Valine | 7.93 | 14.45 | [32] |
Co/Valine | 4.57 | 8.24 | [32] |
Fe/Valine | 6.80 | [39] | |
Mn/Valine | 2.84 | 5.56 | [32] |
Cu/Leucine | 7.89 | 14.34 | [32] |
Ni/Leucine | 5.62 | 10.18 | [40] |
Co/Leucine | 4.52 | 8.16 | [32,40] |
Mn/Leucine | 2.78 | 5.45 | [32] |
Eq. | N | Dependentvariable | Regression coefficients | Intercept (S.E.) | r | S.E. | S.E.cv | ||
---|---|---|---|---|---|---|---|---|---|
a1(S.E.) | a2(S.E.) | a3(S.E.) | |||||||
(6) | 12 | log K1 | 12.2(14) | −12.10(55) | −0.676(46) | 7.49(12) | 0.999 | 0.05 | 0.08 |
(7) | 14 | log β 2 | 3.10(33) | −7.66(36) | −0.646(52) | 14.58(33) | 0.998 | 0.11 | 0.15 |
Metal/Ligand | log K1 (cv) | log β2 (cv) | 3χv(MB) | 3χv(MB2) |
---|---|---|---|---|
Ni/Glycine | 6.21 | 11.11 | 1.90 | 5.37 |
Co/Glycine | 5.18 | 9.25 | 1.99 | 5.65 |
Fe/Glycine | 4.24 | 7.65 | 2.10 | 5.97 |
Mn/Glycine | 3.51 | 6.58 | 2.24 | 6.36 |
Ni/Alanine | 5.93 | 10.69 | 2.32 | 6.02 |
Co/Alanine | 4.79 | 8.76 | 2.42 | 6.30 |
Fe/Alanine | 7.13 | 2.55 | 6.64 | |
Mn/Alanine | 3.09 | 6.10 | 2.70 | 7.05 |
Ni/Valine | 2.75 | 6.89 | ||
Co/Valine | 4.59 | 8.32 | 2.85 | 7.15 |
Fe/Valine | 6.74 | 2.96 | 7.47 | |
Mn/Valine | 2.91 | 5.64 | 3.10 | 7.85 |
Ni/Leucine | 5.57 | 10.01 | 2.85 | 7.08 |
Co/Leucine | 4.50 | 8.16 | 2.95 | 7.35 |
Mn/Leucine | 2.81 | 5.48 | 3.20 | 8.06 |
4. Conclusions
Acknowledgment
References
- Irving, H.; Williams, R.J.P. Order of stability of metal complexes. Nature 1948, 162, 746–747. [Google Scholar] [CrossRef]
- Irving, H.; Williams, R.J.P. The stability of transition-metal complexes. J. Chem. Soc. 1953, 3192–3210. [Google Scholar]
- Cannon, R.D. Stabilities of chromium(II) complexes. J. Inorg. Nucl. Chem. 1976, 38, 1222–1223. [Google Scholar] [CrossRef]
- Vinokurov, E.G.; Bondar, V.V. Prediction of stability constants for Cr(III) and Cr(II) complexes. Russ. J. Coord. Chem. 2003, 29, 66–72. [Google Scholar] [CrossRef]
- Miličević, A.; Raos, N. Prediction of stability constants. In Handbook of Inorganic Chemistry Research; Morrison D.A., Ed., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 267–294. [Google Scholar]
- Raos, N.; Miličević, A. Estimation of stability constants of coordination compounds using models based on topological indices. Arh. Hig. Rada Toksikol. 2009, 60, 123–128. [Google Scholar] [CrossRef]
- Miličević, A.; Raos, N. Estimation of stability constants of copper(II) and nickel(II) chelates with dipeptides by using topological indices. Polyhedron 2008, 27, 887–892. [Google Scholar] [CrossRef]
- Miličević, A.; Raos, N. Prediction of stability of copper(II) and nickel(II) complexes with fructose-amino acids from the molecular-graph models developed on amino-acid chelates. Croat. Chem. Acta 2007, 80, 557–563. [Google Scholar]
- Trinajstić, N. Chemical Graph Theory, 2nd ed; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Janežić, D.; Miličević, A.; Nikolić, S.; Trinajstić, N. Graph-Theoretical Matrices in Chemistry. In Mathematical Chemistry Monographs; Gutman, I., Ed.; University of Kragujevac and Faculty of Science: Kragujevac, Serbia, 2007; No. 3. [Google Scholar]
- Kier, L.B.; Hall, L.H. Molecular Connectivity and Drug Design; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Graovac, A.; Gutman, I.; Trinajstić, N. Topological Approach to the Chemistry of Conjugated Molecules. In Lecture Notes in Chemistry; Springer-Verlag: Berlin, Germany, 1977. [Google Scholar]
- Seybold, P.G.; May, M.; Bengal, U.A. Molecular structure-property relationships. J. Chem. Educ. 1987, 64, 575–581. [Google Scholar] [CrossRef]
- Miličević, A.; Nikolić, S.; Trinajstić, N. Toxicity of aliphatic ethers: A comparative study. Mol. Divers. 2006, 10, 95–99. [Google Scholar] [CrossRef]
- Grgas, B.; Nikolić, S.; Paulić, N.; Raos, N. Estimation of stability constants of copper(II) chelates with N-alkylated amino acids using topological indices. Croat. Chem. Acta 1999, 72, 885–895. [Google Scholar]
- Raos, N.; Branica, G.; Miličević, A. The use of graph-theoretical models to evaluate two electroanalytical methods for determination of stability constants. Croat. Chem. Acta 2008, 81, 511–517. [Google Scholar]
- Miličević, A.; Raos, N. Estimation of stability of coordination compounds by using topological indices. Polyhedron 2006, 25, 2800–2808. [Google Scholar] [CrossRef]
- Miličević, A.; Raos, N. Estimation of stability constants of mixed copper(II) chelates using valence connectivity index of the 3rd order derived from two molecular graph representations. Acta Chim. Slov. 2009, 56, 373–378. [Google Scholar]
- Miličević, A.; Raos, N. Estimation of stability constants of copper(II) chelates with triamines and their mixed complexes with amino acids by using topological indices and the overlapping spheres method. Polyhedron 2007, 26, 3350–3356. [Google Scholar] [CrossRef]
- Miličević, A.; Raos, N. Estimation of stability constants with connectivity index: Development of bivariate and multivariate linear models for copper(II) chelates with oligopeptides. Croat. Chem. Acta 2009, 82, 633–639. [Google Scholar]
- Miličević, A.; Raos, N. Estimation of stability constants of cadmium(II) bis-complexes with amino acids by model based on 3χv connectivity index. Acta Chim. Slov. 2010, 57, 866–871. [Google Scholar]
- Tetko, I.V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V.A.; Radchenko, E.V.; Zefirov, N.S.; Makarenko, A.S.; Tanchuk, V.Y.; Prokopenko, V.V. Virtual computational chemistry laboratory: design and description. J. Comput-Aided Mol. Des. 2005, 19, 453–463. [Google Scholar] [CrossRef]
- VCCLAB, Virtual Computational Chemistry Laboratory. Available online: http://www.vcclab.org (accessed on 1 September 2010).
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors. In Methods and Principles in Medicinal Chemistry; Mannhold, R., Kubinyi, H., Timmerman, H., Eds.; Wiley-VCH: Weinheim, Germany, 2000; Volume 11. [Google Scholar]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics. In Methods and Principles in Medicinal Chemistry, 2nd; Mannhold, R., Kubinyi, H., Folkers, G., Eds.; Wiley-VCH: Weinheim, Germany, 2009; Volume 41. [Google Scholar]
- Available online: http://cactus.nci.nih.gov/services/translate/ (Accessed on 1 September 2010).
- Kier, L.B.; Hall, L.H. Molecular connectivity. J. Pharm. Sci. 1976, 65, 1806–1809. [Google Scholar] [CrossRef]
- Kier, L.B.; Hall, L.H. Molecular Connectivity in Structure-Activity Analysis; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Randić, M. On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem. 2008, 59, 5–124. [Google Scholar]
- Miličević, A.; Raos, N. Influence of chelate ring interactions on copper(II) chelate stability studied by connectivity index functions. J. Phys. Chem. A 2008, 112, 7745–7749. [Google Scholar] [CrossRef]
- Lučić, B.; Trinajstić, N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modelling. J. Chem. Inf. Comput. Sci. 1999, 39, 121–132. [Google Scholar] [CrossRef]
- Maley, L.; Mellor, D. Metal derivatives of 8-hydroxyquinoline 5-sulphonic acid and series of monocarboxylic mono-α-amino acids including histidine. Australian J. Sci. Res. A 1949, 92, 579–594. [Google Scholar]
- Monk, C. Electolytes in solution of amino acids. Trans. Faraday Soc. 1951, 47, 285-291, 297-302. [Google Scholar] [CrossRef]
- Anderson, K.P.; Greenhalgh, W.O; Izatt, R.M. Formation constants and enthalpy and entropy values for the association of H+ and Cu2+ with glycinate and phenylalanate ions in aqueous solution at 10, 25, and 40°. Inorg. Chem. 1966, 5, 2106–2109. [Google Scholar] [CrossRef]
- Izatt, R.M.; Johnson, H.D.; Christensen, J.J. Log Ki, ΔH°i, and ΔS°i values for the interaction of glycinate ion with H+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ at 10, 25, and 40°. J. Chem. Soc. Dalton Trans. 1972, 1152–1157. [Google Scholar]
- Albert, A. Quantitative studies of the avidity of naturally occurring substances for trace metals. Biochem. J. 1953, 54, 646–650. [Google Scholar]
- Neilands, J.B. Metal and hydrogen-ion binding properties of cycloserine. Arch. Biochem. Biophys. 1956, 62, 151–162. [Google Scholar] [CrossRef]
- Anderson, K.P.; Newel, D.A.; Izatt, R.M. Formation constant, enthalpy, and entropy values for the association of alanine with H+ and Cu2+ at 10, 25, and 40°. Inorg. Chem. 1966, 5, 62–65. [Google Scholar] [CrossRef]
- Albert, A. Quantitative studies on the avidity of naturally occurring substances for trace metals. J. Biochem. 1950, 47, 531–540. [Google Scholar]
- Datta, S.; Leberman, R.; Rabin, B. The chelation of metal ions by dipeptides and related substances. Trans. Faraday Soc. 1959, 55, 1982-1987, 2141-2151. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Miličević, A.; Branica, G.; Raos, N. Irving-Williams Order in the Framework of Connectivity Index 3χv Enables Simultaneous Prediction of Stability Constants of Bivalent Transition Metal Complexes. Molecules 2011, 16, 1103-1112. https://doi.org/10.3390/molecules16021103
Miličević A, Branica G, Raos N. Irving-Williams Order in the Framework of Connectivity Index 3χv Enables Simultaneous Prediction of Stability Constants of Bivalent Transition Metal Complexes. Molecules. 2011; 16(2):1103-1112. https://doi.org/10.3390/molecules16021103
Chicago/Turabian StyleMiličević, Ante, Gina Branica, and Nenad Raos. 2011. "Irving-Williams Order in the Framework of Connectivity Index 3χv Enables Simultaneous Prediction of Stability Constants of Bivalent Transition Metal Complexes" Molecules 16, no. 2: 1103-1112. https://doi.org/10.3390/molecules16021103
APA StyleMiličević, A., Branica, G., & Raos, N. (2011). Irving-Williams Order in the Framework of Connectivity Index 3χv Enables Simultaneous Prediction of Stability Constants of Bivalent Transition Metal Complexes. Molecules, 16(2), 1103-1112. https://doi.org/10.3390/molecules16021103