Alkaloids Induce Programmed Cell Death in Bloodstream Forms of Trypanosomes (Trypanosoma b. brucei)
Abstract
:Introduction
Results and Discussion
Induction of apoptosis in trypanosomes and leukemia cells (Jurkat APO-S)
| Alkaloid (highest concentration tested) | Membrane depolarization | PCD/Apoptosis (DNA fragmentation) | |||
|---|---|---|---|---|---|
| Jurkat APO-S | T. b. brucei | Jurkat APO-S | Jurkat + z-VAD-fmk | T. b. brucei | |
| Quinoline alkaloids | |||||
| Cinchonidine (10-3 M) | na | 50% | 45% | 25% | EC50: 0.42 mM |
| Cinchonine (10-4 M) | na | na | na | nd | 30% |
| Quinidine (10-4 M) | na | na | na | nd | 45% |
| Quinine (10-3 M) | 15% | 50% | 45% | 45% | EC50: 59.9 µM |
| Isoquinoline alkaloids | |||||
| α-Allocryptopine (10-4 M) | na | na | na | nd | 17% |
| Aporphine (10-4 M) | nd | na | nd | nd | na |
| Berberine (10-4 M) | 15% | 35% | na | na | EC50: 99.5 µM |
| Boldine (10-4 M) | nd | na | nd | nd | na |
| Chelerythrine (10-4 M) | 100% | 95% | 35% | 5% | EC50: 1.3 µM |
| Chelidonine (10-4 M) | na | na | 30% | 12% | na |
| Coralyne (10-4 M) | nd | na | nd | nd | na |
| Emetine (2.5 x 10-4 M) | 5% | na | 10-5 M 45% | 10-5 M 16% | EC50: 9.8 µM |
| Laudanosine (10-4 M) | nd | nd | nd | nd | EC50: 0.5 mM |
| Noscapine (10-3 M) | nd | nd | nd | nd | EC50: 0.54 mM |
| Papaverine (10-4 M) | na | 30% | 18% | 6% | 10% |
| Protopine (10-4 M) | na | na | 10% | 4% | 30% |
| Sanguinarine (10-5 M) | 65% | 50% | 5% | 5% | EC50: 4.8 µM |
| Indole alkaloids | |||||
| Ajmalicine (10-4 M) | nd | nd | nd | nd | 50% |
| Ajmaline (10-4 M) | nd | nd | nd | nd | na |
| Brucine (10-4 M) | nd | nd | nd | nd | na |
| Ellipticine (10-4 M) | 100% | 90% | 15% | 10% | 10% |
| Ergotamine (10-4 M) | nd | nd | nd | nd | EC50: 64 µM |
| Gramine (10-4 M) | nd | nd | nd | nd | na |
| Harmaline (10-4 M) | nd | nd | nd | nd | 45% |
| Harman (10-4 M) | nd | nd | nd | nd | na |
| Harmine (10-4 M) | 5% | 30% | 30% | 10% | EC50: 74 µM |
| Physostigmine (10-3 M) | nd | nd | nd | nd | EC50: 0.54 mM |
| Strychnine (10-5 M) | nd | nd | nd | nd | na |
| Vinblastine (10-5 M) | na | nd | 35% | 15% | 40% |
| Vincamine (10-4 M) | na | nd | na | na | na |
| Vincristine (10-5 M) | na | nd | 40% | 20% | 35% |
| Yohimbine (10-4 M) | nd | nd | nd | nd | na |
| Steroidal alkaloids | |||||
| α-Chaconine (10-5 M) | nd | nd | nd | nd | EC50: 2.4 µM |
| Demissidine (10-4 M) | nd | nd | nd | nd | EC50: 14 µM |
| α-Solanine (10-5 M) | na | na | na | nd | EC50: 8.5 mM |
| Veratridine (10-4 M) | nd | nd | nd | nd | EC50: 43 µM |
| Piperidine alkaloids | |||||
| Arecoline (10-3 M) | nd | nd | nd | nd | 45% |
| Coniine (10-4 M) | nd | nd | nd | nd | na |
| Lobeline (10-4 M) | nd | nd | nd | nd | na |
| Piperine (10-3 M) | 50% | 40% | 30% | 5% | EC50: 0.57 mM |
| Pseudopellerine (10-3 M) | nd | nd | nd | nd | na |
| Purine alkaloids | |||||
| Caffeine (10-4 M) | nd | nd | nd | nd | na |
| Theobromine (10-4 M) | nd | nd | nd | nd | na |
| Theophylline (10-4 M) | nd | nd | nd | nd | na |
| Tropane alkaloids | |||||
| Hyoscyamine (10-3 M) | nd | nd | nd | nd | 32% |
| Methylscopolamine (10-3 M) | nd | nd | nd | nd | na |
| Tropine (10-3 M) | nd | nd | nd | nd | na |
| Quinolizidine alkaloids | |||||
| Cytisine (10-4 M) | nd | nd | nd | nd | na |
| Lupanine (10-3 M) | nd | nd | nd | nd | na |
| Sparteine (10-3 M) | nd | nd | nd | nd | na |
| Other alkaloids | |||||
| Aconitine (10-5 M) | nd | nd | nd | nd | na |
| Capsaicine (10-5 M) | nd | nd | nd | nd | na |
| Colchicine (10-4 M) | na | 40% | 50% | 22% | 50% |
| Ephedrine (10-3 M) | nd | nd | nd | nd | na |
| Nicotine (10-3 M) | nd | nd | nd | nd | na |
| Controls | |||||
| Actinomycin D (10-3 M) | nd | nd | 35% | 12% | nd |
| CCCP (10-5 M) | 60% | 50% | nd | nd | EC50: 30 µM |
| Staurosporine (5 x 10-5 M) | nd | nd | nd | nd | EC50: 29 nM |
| Valinomycin (10-5 M) | 40% | 100% | 55% | 40% | 40% |
| Alkaloid | Induction of apoptosis/PCD | Cytotoxicity | |||
|---|---|---|---|---|---|
| T. brucei | Jurkat APO-S 100 µM | HL60 MAC | T. brucei | HL60 | |
| Chelerythrine | EC50: 1.3 µM | +++ | 1 µM | nd | nd |
| Chaconine | EC50: 2.4 µM | nd | na | nd | nd |
| Sanguinarine | EC50: 4.8 µM | + | 5 µM | EC50: 1.9 µM | EC50: 1.4 µM |
| Emetine | EC50: 9.8 µM | +++ | 0.5 µM | EC50: 0.04 µM | EC50: 0.09 µM |
| Demissidine | EC50: 14 µM | nd | nd | nd | nd |
| Veratridine | EC50: 43 µM | nd | na | nd | nd |
| Quinine | EC50: 59.9 µM | ++ | 500 µM | EC50: 4.9 µM | EC50: 126 µM |
| Ergotamine | EC50: 64 µM | nd | 50 µM | EC50: 3.2 µM | EC50: 32 µM |
| Harmine | EC50: 74 µM | ++ | 100 µM | nd | nd |
| Berberine | EC50: 99.5 µM | na | 100 µM | EC50: 0.53 µM | EC50: 27 µM |
| Cinchonidine | EC50: 420 µM | ++ | 100 µM | EC50: 7.1 µM | EC50: 169 µM |
| Laudanosine | EC50: 500 µM | nd | na | nd | nd |
| Noscapine | EC50: 540 µM | nd | 50 µM | nd | nd |
| Piperine | EC50: 570 µM | ++ | 100 µM | EC50: >100 µM | nd |
| Vinblastine | 10-5 M: 40% | +++ | 5 nM | nd | nd |
| Vincristine | 10-5 M: 35% | +++ | 5 nM | nd | nd |
| Colchicine | 10-4 M: 50% | +++ | 0.1 µM | EC50: 21 µM | nd |
| Ajmalicine | 10-4 M: 50% | nd | 50 µM | nd | nd |
| Harmaline | 10-4 M: 45% | nd | na | EC50: 30 µM | nd |
| Quinidine | 10-4 M: 45% | na | na | EC50: 0.7 µM | EC50: 400 µM |
| Cinchonine | 10-4 M: 30% | na | na | EC50: 1.2 µM | EC50: 382 µM |
| Ellipticine | 10-4 M: 10% | ++ | 5 µM | nd | nd |
| Alkaloid | Disturbance of Membrane fluidity | DNAintercalation | Protein biosynthesis inhibition | Microtubul inhibition | Neurotoxins |
|---|---|---|---|---|---|
| Berberine | na | ++ | ++ | na | + |
| Chaconine | +++ | nd | + | na | + |
| Cinchonidine | na | + | ++ | na | + |
| Cinchonine | na | + | + | na | + |
| Colchicine | + | nd | na | +++ | + |
| Demissidine | +++ | nd | nd | nd | + |
| Emetine | na | + | ++++ | na | + |
| Ergotamine | na | ++ | + | nd | +++ |
| Harmine | + | ++ | ++ | nd | +++ |
| Quinidine | + | + | ++ | na | + |
| Quinine | na | + | ++ | na | + |
| Sanguinarine | + | +++ | nd | na | ++ |
| Vinblastine | nd | ++ | nd | +++ | + |
| Vincristine | nd | ++ | nd | +++ | + |
Experimental
Cell line and culture conditions
Culture of Trypanosoma b. brucei
Tested substances
Induction of apoptosis
Analysis of cell death
Flow cytometry analysis:
Determination of mitochondrial membrane potential
Data analysis
Acknowledgements
References
- Molyneux, D.H. Current public health status of trypanosomiases and leishmaniases. In Trypanosomiasis and leishmaniasis: biology and control; Hide, G., Mottram, J.C., Coombs, G.H., Holmes, P.H., Eds.; CAB International: Wallington, 1997; pp. 39–50. [Google Scholar]
- Kristjanson, P.M.; Swallow, B.M.; Rowlands, G.J.; Kruska, R.L.; de Leeuw, P.N. Measuring the costs of African animal trypanosomiasis, the potential benefits of control and returns to research. Agr. Syst. 1999, 59, 79–98. [Google Scholar] [CrossRef]
- Croft, S.L. The current status of antiparasitic chemotherapy. Parasitology 1997, (supplement). 114, 3–15. [Google Scholar]
- Ross, C.A.; Sutherland, D.V. Drug resistance in trypanosomatids. In Trypanosomiasis and leishmaniasis: biology and control; Hide, G., Mottram, J.C., Coombs, G.H., Holmes, P.H., Eds.; CAB International: Wallington, 1997; pp. 259–269. [Google Scholar]
- Merschjohann, K.; Sporer, F.; Steverding, D.; Wink, M. In vitro effects of alkaloids on bloodstream forms of Trypanosoma brucei and T. congolense. Planta Med. 2001, 67, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, V.; Wink, M. Induction of apoptosis by alkaloids, non-protein amino acids, and cardiac glycosides in human promyelotic HL-60 cels. Z. Naturforsch. 2007, 62c, 458–466. [Google Scholar]
- Wink, M. Allelochemical properties and the raison d'être of alkaloids. In The Alkaloids; Cordell, G., Ed.; Academic Press: Orlando, FL, 1993; Vol. 43, pp. 1–118. [Google Scholar]
- Wink, M. Interference of alkaloids with neuroreceptors and ion channels. In Bioactive natural products; Atta-Ur-Rahman, Ed.; Elsevier: Amsterdam, New York, 2000; Vol. 11, pp. 3–129. [Google Scholar]
- Wink, M.; Schimmer, O. Modes of action of defensive secondary metabolites. In Function of Plant secondary metabolites and their exploitation in biotechnology; Wink, M., Ed.; Annual Plant Reviews; Sheffield Academic Press: Sheffield, 1999; Vol. 3, pp. 17–133. [Google Scholar]
- Wink, M. Molecular modes of action of cytotoxic alkaloids - From DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. In The Alkaloids; Cordell, G., Ed.; Elsevier: Amsterdam, New York, 2007; Vol. 64, pp. 1–48. [Google Scholar]
- Roberts, M.F.; Wink, M. Alkaloids: Biochemistry, ecology and medicinal applications; Plenum: New York, 1998. [Google Scholar]
- Kerr, J.B.; Wyllie, A.H.; Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging complication in tissue kinetics. Br. J. Cancer 1972, 26, 239–57. [Google Scholar] [CrossRef] [PubMed]
- Krammer, H. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv. Immunol. 1999, 71, 163–210. [Google Scholar] [PubMed]
- Zamzami, N.; Kroemer, G. The mitochondrion in apoptosis: how Pandora's box opens. Nature Rev. Mol. Cell Biol. 2001, 2, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Wink, M.; Schmeller, T.; Latz-Brüning, B. Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA and other molecular targets. J. Chem. Ecol. 1998, 24, 1881–1937. [Google Scholar] [CrossRef]
- Ameisen, J.-C.; Idziorek, T.; Billaut-Multo, O.; Loyens, M.; Yissier, J.-P.; Potentier, A.; Ouai, A. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): Implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Parasitol. Today 1996, 12, 49. [Google Scholar] [CrossRef]
- Welburn, S.C.; Dale, C.; Ellis, D.; Beecroft, R.; Pearson, T.W. Apoptosis in procyclic Trypanosoma brucei rhodesiense in vitro. Cell Death Differ. 1996, 3, 229–36. [Google Scholar] [PubMed]
- Baltz, T.; Baltz, C.; Giroud, C.; Crockett, J. Cultivation in a semi-defined medium of animal infective forms of Trypansoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985, 4, 1273–1277. [Google Scholar] [PubMed]
- Nicoletti, I.G.; Migliorati, M.C.; Pagliacci, F.; Grignani, F.; Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Meth. 1991, 139, 271–279. [Google Scholar] [CrossRef]
- Hall, C.A.; Hobby, T.; Cipollini, M. Efficacy and mechanisms of alpha-solasonine-and alpha-solamargine-induced cytolysis on two strains of Trypanosoma cruzi. J. Chem. Ecol. 2006, 32, 2405–16. [Google Scholar] [CrossRef] [PubMed]
- Freire-de-Lima, L.; Ribeiro, T.S.; Rocha, G.M.; Brandão, B.A.; Romeiro, A.; Mendonça-Previato, L.; Previato, J.O.; de Lima, M.E.; de Carvalho, T.M.; Heise, N. The toxic effects of piperine against Trypanosoma cruzi: ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitol. Res. 2008, 102, 1059–67. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Mesia, L.; Ruiz-Mesia, W.; Reina, M.; Martinez-Diaz, R.; de Ines, C.; Guadano, A.; Gonzalez-Coloma, A. Bioactive cinchona alkaloids from Remijia peruviana. J. Agric. Food Chem. 2005, 53, 1921–1926. [Google Scholar] [CrossRef] [PubMed]
- Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as potential antiparasitic drugs. Stud. Nat. Prod. Chem. 2002, 26G, 779–848. [Google Scholar]
- Abe, F.; Nagafuji, S.; Okabe, H.; Akahane, H.; Estrada-Muniz, E.; Huerta-Reyes, M.; Reyes-Chilpa, R. Trypanocidal constituents in plants 3. Leaves of Garcinia intermedia and heartwood of Calophyllum brasiliense. Biol. Pharm. Bull. 2004, 27, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Cavin, J.C.; Krassner, S.M.; Rodriguez, E. Plant-derived alkaloids active against Trypanosoma cruzi. J. Ethnopharmacol. 1987, 19, 89–94. [Google Scholar] [CrossRef]
- Mackey, Z.B.; Baca, A.M.; Mallari, J.P.; Apsel, B.; Shelat, A.; Hansell, E.J.; Chiang, P.K.; Wolff, B.; Guy, K.R.; Williams, J.; McKerrow, J.H. Discovery of trypanocidal compounds by whole cell HTS of Trypanosoma brucei. Chem. Biol. Drug Des. 2006, 67, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Konopka, E. A.; Goble, F. C.; Prins, D. A. Emetine and some related compounds in experimental Chagas' disease. Antimicrob. Agents Chemother. 1965, 772–776. [Google Scholar]
- Hopp, K. H.; Cunningham, L. V.; Bromel, M. C.; Schermeister, L. J.; Khalil, S. K.; Wahba. In vitro antitrypanosomal activity of certain alkaloids against Trypanosoma lewisi. Lloydia 1976, 39, 375–7. [Google Scholar] [PubMed]
- Benard, J.; Dat-Xuong, N.; Riou, G. Trypanocide activity of some ellipticine derivatives against Trypanosoma cruzi cultured in vitro. Compt. Rend. Sean.s Acad. Sci. Ser. D: Sci. Nat. 1975, 280, 1177–1180. [Google Scholar]
- Rivas, P.; Cassels, B. K.; Morello, A.; Repetto, Y. Effects of some .beta.-carboline alkaloids on intact Trypanosoma cruzi epimastigotes. Comp. Biochem. Physiol. 1999, 122C, 27–31. [Google Scholar]
- da Silva, R. A.; Bartholomeu, D. C.; Teixeira, S. M. R. Control mechanisms of tubulin gene expression in Trypanosoma cruzi. Int. J. Parasitol. 2006, 36, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Chataing, B.; Concepcion, J. L.; Lobaton, R.; Usubillaga, A. Inhibition of Trypanosoma cruzi growth in vitro by Solanum alkaloids. A comparison with ketoconazole. Planta Med. 1998, 64, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T. S.; Freire-de-Lima, L.; Previato, J. O.; Mendonca-Previato, L.; Heise, N.; Freire de Lima, M.E. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorg. Med. Chem. Lett. 2004, 14, 3555–3558. [Google Scholar] [CrossRef] [PubMed]
- Astolfi F., S.; Pereira de Almeida, E. R.; Gander, E.S. The influence of hydroxyurea and colchicine on growth and morphology of Trypanosoma cruzi. Acta Trop. 1978, 35, 229–237. [Google Scholar]
- Figarella, K.; Rawer, M.; Uzcategui, N. L.; Kubata, B. K.; Lauber, K.; Madeo, F.; Wesselborg, S.; Duszenko, M. Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Diff. 2006, 13, 1802–1814. [Google Scholar] [CrossRef] [PubMed]
- Duszenko, M.; Figarella, K.; Macleod, E. T.; Welburn, S. C. Death of a trypanosome: a selfish altruism. Trends Parasitol 2006, 22, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Jaattela, M.; Tschopp, J. Caspase-independent cell death in T lymphocytes. Nat. Immunol 2003, 5, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, H.K.; Susin, S. A. Mitochondrial effectors in caspase-independent cell death. FEBS Lett 2004, 557, 14–20. [Google Scholar] [CrossRef]
- Lockshin, R. A.; Zakewri, Z. Caspase-independent cell death? Oncogene 2004, 23, 2766–2773. [Google Scholar] [CrossRef] [PubMed]
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rosenkranz, V.; Wink, M. Alkaloids Induce Programmed Cell Death in Bloodstream Forms of Trypanosomes (Trypanosoma b. brucei). Molecules 2008, 13, 2462-2473. https://doi.org/10.3390/molecules13102462
Rosenkranz V, Wink M. Alkaloids Induce Programmed Cell Death in Bloodstream Forms of Trypanosomes (Trypanosoma b. brucei). Molecules. 2008; 13(10):2462-2473. https://doi.org/10.3390/molecules13102462
Chicago/Turabian StyleRosenkranz, Vera, and Michael Wink. 2008. "Alkaloids Induce Programmed Cell Death in Bloodstream Forms of Trypanosomes (Trypanosoma b. brucei)" Molecules 13, no. 10: 2462-2473. https://doi.org/10.3390/molecules13102462
APA StyleRosenkranz, V., & Wink, M. (2008). Alkaloids Induce Programmed Cell Death in Bloodstream Forms of Trypanosomes (Trypanosoma b. brucei). Molecules, 13(10), 2462-2473. https://doi.org/10.3390/molecules13102462
