Within-Day Energy Balance and Metabolic Suppression in Male Collegiate Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Body Composition and Maximal Oxygen Uptake
2.4. Resting Energy Expenditure and Blood Sampling
2.5. 24 h Energy Intake
2.6. 24 h Energy Expenditure
2.6.1. Resting Energy Expenditure and Sleeping Energy Expenditure
2.6.2. Diet Induced Thermogenesis
2.6.3. Exercise Energy Expenditure and Excessive Post-Exercise Oxygen Consumption
2.6.4. Non-Exercise Activity Thermogenesis
2.7. Within-Day Energy Balance
2.8. Within-Day Energy Availability
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the female athlete triad—Relative energy deficiency in sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, L.M.; Lundy, B.; Fahrenholtz, I.L.; Melin, A.K. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Fahrenholtz, I.L.; Sjodin, A.; Benardot, D.; Tornberg, A.B.; Skouby, S.; Faber, J.; Sundgot-Borgen, J.K.; Melin, A.K. Within-day energy deficiency and reproductive function in female endurance athletes. Scand. J. Med. Sci. Sports 2018, 28, 1139–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staal, S.; Sjodin, A.; Fahrenholtz, I.; Bonnesen, K.; Melin, A.K. Low RMRratio as a surrogate marker for energy deficiency, the choice of predictive equation vital for correctly identifying male and female ballet dancers at risk. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Strock, N.C.; Koltun, K.J.; Southmayd, E.A.; Williams, N.I.; De Souza, M.J. Indices of resting metabolic rate accurately reflect energy deficiency in exercising women. Int. J. Sport Nutr. Exerc. Metab. 2020, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Torstveit, M.K.; Fahrenholtz, I.; Stenqvist, T.B.; Sylta, O.; Melin, A. Within-day energy deficiency and metabolic perturbation in male endurance athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 419–427. [Google Scholar] [CrossRef]
- Deutz, R.C.; Benardot, D.; Martin, D.E.; Cody, M.M. Relationship between energy deficits and body composition in elite female gymnasts and runners. Med. Sci. Sports Exerc. 2000, 32, 659–668. [Google Scholar] [CrossRef]
- Benardot, D. Timing of energy and fluid intake: New concepts for weight control and hydration. ACSMs Health Fit. J. 2007, 11, 13–19. [Google Scholar] [CrossRef]
- Benardot, D. Energy thermodynamics revisited: Energy intake strategies for optimizing athlete body composition and performance. Pensar. Mov. 2013, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- De Souza, M.J.; Hontscharuk, R.; Olmsted, M.; Kerr, G.; Williams, N.I. Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite 2007, 48, 359–367. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Koltun, K.J.; Strock, N.C.A.; Williams, N.I. Rethinking the concept of an energy availability threshold and its role in the female athlete triad. Curr. Opin. Physiol. 2019, 10, 35–42. [Google Scholar] [CrossRef]
- De Souza, M.J.; West, S.L.; Jamal, S.A.; Hawker, G.A.; Gundberg, C.M.; Williams, N.I. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone 2008, 43, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.L.; De Souza, M.J.; Mallinson, R.J.; Scheid, J.L.; Williams, N.I. Energy availability discriminates clinical menstrual status in exercising women. J. Int. Soc. Sports Nutr. 2015, 12, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo, F.; Benardot, D.; Hernandez, E. Within-day energy balance in mexican female soccer (football) players-an exploratory investigation. Int. J. Sports Exerc. Med. 2018, 4, 107. [Google Scholar]
- Rico-Sanz, J.; Frontera, W.R.; Molé, P.A.; Rivera, M.A.; Rivera-Brown, A.; Meredith, C.N. Dietary and performance assessment of elite soccer players during a period of intense training. Int. J. Sport Nutr. 1998, 8, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Pennock, A. Dietary analysis of young professional soccer players for 1 week during the competitive season. J. Strength Cond. Res. 2011, 25, 1816–1823. [Google Scholar] [CrossRef]
- Reed, J.L.; De Souza, M.J.; Williams, N.I. Changes in energy availability across the season in division I female soccer players. J. Sports Sci. 2013, 31, 314–324. [Google Scholar] [CrossRef]
- Moss, S.L.; Randell, R.K.; Burgess, D.; Ridley, S.; ÓCairealláin, C.; Allison, R.; Rollo, I. Assessment of energy availability and associated risk factors in professional female soccer players. Eur. J. Sport Sci. 2020, 1–27. [Google Scholar] [CrossRef]
- Lee, S.; Kuniko, M.; Han, S.; Oh, T.; Taguchi, M. Association of low energy availability and suppressed metabolic status in Korean male collegiate soccer players: A pilot study. Am. J. Men’s Health 2020, 14. [Google Scholar] [CrossRef]
- Hayes, M.; Chustek, M.; Wang, Z.; Gallagher, D.; Heshka, S.; Spungen, A.; Bauman, W.; Heymsfield, S.B. DXA: Potential for creating a metabolic map of organ-tissue resting energy expenditure components. Obes. Res. 2002, 10, 969–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- Reed, G.W.; Hill, J.O. Measuring the thermic effect of food. Am. J. Clin. Nutr. 1996, 63, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Weir, J.D.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Phelain, J.F.; Reinke, E.; Harris, M.A.; Melby, C.L. Postexercise energy expenditure and substrate oxidation in young women resulting from exercise bouts of different intensity. J. Am. Coll. Nutr. 1997, 16, 140–146. [Google Scholar] [CrossRef]
- Heikura, I.A.; Quod, M.; Strobel, N.; Palfreeman, R.; Civil, R.; Burke, L.M. Alternate-day low energy availability during spring classics in professional cyclists. Int. J. Sports Physiol. Perform. 2019, 1233–1243. [Google Scholar] [CrossRef]
- O’Brien, L.; Collins, K.; Doran, D.; Khaiyat, O.; Amirabdollahian, F. Dietary intake and energy expenditure assessed during a pre-season period in elite gaelic football players. Sports 2019, 7, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, S.; Heinrich, L.; Schumacher, Y.O.; Grosshauser, M.; Blum, A.; Konig, D.; Berg, A.; Schmid, A. Energy intake and energy expenditure of elite cyclists during preseason training. Int. J. Sports Med. 2005, 26, 701–706. [Google Scholar] [CrossRef]
- Dueck, C.A.; Matt, K.S.; Manore, M.M.; Skinner, J.S. Treatment of athletic amenorrhea with a diet and training intervention program. Int. J. Sport Nutr. 1996, 6, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Guebels, C.P.; Kam, L.C.; Maddalozzo, G.F.; Manore, M.M. Active women before/after an intervention designed to restore menstrual function: Resting metabolic rate and comparison of four methods to quantify energy expenditure and energy availability. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 37–46. [Google Scholar] [CrossRef]
- Geesmann, B.; Gibbs, J.C.; Mester, J.; Koehler, K. Association between energy balance and metabolic hormone suppression during ultraendurance exercise. Int. J. Sports Physiol. Perform. 2017, 12, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Roemmich, J.N.; Sinning, W.E. Weight loss and wrestling training: Effects on growth-related hormones. J. Appl. Physiol. 1997, 82, 1760–1764. [Google Scholar] [CrossRef]
- Koehler, K.; Hoerner, N.R.; Gibbs, J.C.; Zinner, C.; Braun, H.; De Souza, M.J.; Schaenzer, W. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J. Sports Sci. 2016, 34, 1921–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihle, R.; Loucks, A.B. Dose-response relationships between energy availability and bone turnover in young exercising women. J. Bone Miner. Res. 2004, 19, 1231–1240. [Google Scholar] [CrossRef]
- Loucks, A.B.; Thuma, J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrinol. Metab. 2003, 88, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Melin, A.; Heikura, I.A.; Tenforde, A.; Mountjoy, M. Energy availability in athletics: Health, performance, and physique. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 152–164. [Google Scholar] [CrossRef]
- Cooper, K.M.; Ackerman, K.E. Endocrine implications of relative energy deficiency in sport. In Endocrinology of Physical Activity and Sport; Springer: Berlin/Heidelberg, Germany, 2020; pp. 303–320. [Google Scholar]
- Elliott-Sale, K.J.; Tenforde, A.S.; Parziale, A.L.; Holtzman, B.; Ackerman, K.E. Endocrine effects of relative energy deficiency in sport. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 335–349. [Google Scholar] [CrossRef]
- De Souza, M.J.; Koltun, K.J.; Williams, N.I. The role of energy availability in reproductive function in the female athlete triad and extension of its effects to men: An initial working model of a similar syndrome in male athletes. Sports Med. 2019, 49, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Behrens, C.E.; Delk-Licata, A.; Benardot, D.; Bertrand, B.M.; Chandler-Laney, P.C.; Plaisance, E.P.; Fernández, J.R. The relationship between hourly energy balance and fat mass in female collegiate soccer players. J. Hum. Sport Exerc. 2019, 15, 735–746. [Google Scholar] [CrossRef]
- Anderson, L.; Naughton, R.J.; Close, G.L.; Di Michele, R.; Morgans, R.; Drust, B.; Morton, J.P. Daily distribution of macronutrient intakes of professional soccer players from the english premier league. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Bettonviel, A.E.; Brinkmans, N.Y.; Russcher, K.; Wardenaar, F.C.; Witard, O.C. Nutritional status and daytime pattern of protein intake on match, post-match, rest and training days in senior professional and youth elite soccer players. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujika, I.; Halson, S.; Burke, L.M.; Balagué, G.; Farrow, D. An integrated, multifactorial approach to periodization for optimal performance in individual and team sports. Int. J. Sports Physiol. Perform. 2018, 13, 538–561. [Google Scholar] [CrossRef] [PubMed]
Total | Normal (n = 5) | Suppressed (n = 5) | p-Value | |
---|---|---|---|---|
Age (years) | 19.1 ± 0.6 | 19.2 ± 0.8 | 19.0 ± 0.0 | 0.519 |
Height (cm) | 175.8 ± 5.5 | 173.0 ± 1.9 | 178.7 ± 6.7 | 0.135 |
Weight (kg) | 69.81 ± 6.14 | 67.66 ± 4.41 | 71.96 ± 7.34 | 0.294 |
BMI (kg/m2) | 22.5 ± 1.3 | 22.6 ± 1.4 | 22.5 ± 1.4 | 0.930 |
BMD (g/cm2) | 1.378 ± 0.081 | 1.391 ± 0.070 | 1.366 ± 0.097 | 0.655 |
Z-score | 1.6 ± 0.8 | 1.8 ± 0.8 | 1.4 ± 0.8 | 0.416 |
Body fat (kg) | 9.4 ± 2.4 | 9.2 ± 2.0 | 9.6 ± 3.0 | 0.831 |
Body fat (%) | 13.3 ± 2.4 | 13.5 ± 2.3 | 13.1 ± 2.7 | 0.819 |
FFM (kg) | 60.4 ± 4.3 | 58.5 ± 3.0 | 62.4 ± 4.7 | 0.159 |
FFM (%) | 86.7 ± 2.4 | 86.5 ± 2.3 | 86.9 ± 2.7 | 0.819 |
VO2 max (mL/kg/min) | 55.6 ± 6.0 | 53.0 ± 4.6 | 58.2 ± 6.5 | 0.180 |
Total | Normal (n = 5) | Suppressed (n = 5) | p-Value | |
---|---|---|---|---|
REEratio (REEm/REEp) | 0.96 ± 0.08 | 1.03 ± 0.05 | 0.90 ± 0.04 | 0.002 * |
REEm/FFM (kcal/kg/day) | 27.6 ± 2.3 | 29.4 ± 1.0 | 25.7 ± 1.4 | 0.001 * |
EI (kcal/day) | 3342 ± 522 | 3660 ± 347 | 3024 ± 491 | 0.046 * |
DIT (kcal/day) | 332 ± 52 | 364 ± 33 | 301 ± 49 | 0.043 * |
Net EEE (kcal/day) | 1391 ± 310 | 1458 ± 420 | 1324 ± 168 | 0.537 |
EPOC (kcal/day) | 125 ± 28 | 132 ± 37 | 119 ± 17 | 0.513 |
Net NEAT (kcal/day) | 456 ± 100 | 469 ± 70 | 443 ± 131 | 0.702 |
REEh (kcal/day) | 1057 ± 141 | 1131 ± 150 | 982 ± 93 | 0.096 |
SEE (kcal/day) | 542 ± 42 | 531 ± 32 | 552 ± 52 | 0.473 |
TEE (kcal/day) | 3903 ± 415 | 4085 ± 434 | 3721 ± 342 | 0.179 |
24-h EB (kcal) | −561 ± 529 | −426 ± 621 | −697 ± 444 | 0.450 |
24-h EA (kcal/kg FFM) | 32.7 ± 11.0 | 37.8 ± 11.8 | 27.5 ± 8.0 | 0.146 |
WDEB < 0 kcal (h/day) | 20.2 ± 1.8 | 20.0 ± 1.9 | 20.4 ± 1.9 | 1.000 |
WDEB < −400 kcal (h/day) | 11.9 ± 1.9 | 12.0 ± 1.9 | 11.8 ± 2.0 | 0.876 |
Largest hourly deficit (kcal) | −1509 ± 243 | −1572 ± 277 | −1446 ± 214 | 0.446 |
Total | Normal (n = 5) | Suppressed (n = 5) | p-Value | |
---|---|---|---|---|
EI (kcal/day) | 3365 ± 479 | 3615 ± 428 | 3116 ± 422 | 0.100 |
DIT (kcal/day) | 332 ± 48 | 359 ± 42 | 304 ± 40 | 0.068 |
Net EEE (kcal/day) | 1831 ± 357 | 1903 ± 508 | 1759 ± 124 | 0.567 |
EPOC (kcal/day) | 165 ± 32 | 172 ± 45 | 158 ± 13 | 0.516 |
Net NEAT (kcal/day) | 394 ± 114 | 393 ± 63 | 396 ± 160 | 0.974 |
REEh (kcal/day) | 1081 ± 133 | 1146 ± 151 | 1017 ± 81 | 0.132 |
SEE (kcal/day) | 519 ± 47 | 518 ± 36 | 520 ± 60 | 0.966 |
TEE (kcal/day) | 4323 ± 469 | 4491 ± 558 | 4154 ± 335 | 0.280 |
24-h EB (kcal) | −957 ± 530 | −876 ± 701 | −1038 ± 353 | 0.657 |
24-h EA (kcal/kg FFM) | 25.7 ± 10.4 | 29.6 ± 12.8 | 21.9 ± 6.6 | 0.265 |
WDEB < 0 kcal (h/day) | 21.3 ± 1.3 | 21.0 ± 1.6 | 21.6 ± 1.1 | 0.511 |
WDEB < −400 kcal (h/day) | 12.7 ± 1.6 | 12.8 ± 1.9 | 12.6 ± 1.3 | 0.854 |
Largest hourly deficit (kcal) | −1718 ± 278 | −1792 ± 348 | −1644 ± 197 | 0.434 |
Total | Normal (n = 5) | Suppressed (n = 5) | p Value | |
---|---|---|---|---|
EI (kcal/day) | 3284 ± 803 | 3772 ± 463 | 2796 ± 800 | 0.046 * |
DIT (kcal/day) | 335 ± 85 | 378 ± 47 | 292 ± 96 | 0.111 |
Net EEE (kcal/day) | 291 ± 292 | 345 ± 279 | 238 ± 327 | 0.666 |
EPOC (kcal/day) | 26 ± 26 | 31 ± 24 | 21 ± 29 | 0.666 |
Net NEAT (kcal/day) | 609 ± 138 | 658 ± 142 | 560 ± 128 | 0.286 |
REEh (kcal/day) | 995 ± 172 | 1094 ± 156 | 895 ± 131 | 0.061 |
SEE (kcal/day) | 598 ± 61 | 564 ± 46 | 632 ± 59 | 0.076 |
TEE (kcal/day) | 2855 ± 398 | 3071 ± 268 | 2639 ± 410 | 0.084 |
24-h EB (kcal) | 429 ± 693 | 701 ± 602 | 157 ± 730 | 0.234 |
24-h EA (kcal/kg FFM) | 50.1 ± 16.0 | 58.8 ± 13.3 | 41.5 ± 14.5 | 0.075 |
WDEB < 0 kcal (h/day) | 17.8 ± 4.1 | 17.6 ± 3.6 | 18.0 ± 4.9 | 0.888 |
WDEB < −400 kcal (h/day) | 9.8 ± 3.0 | 9.8 ± 2.8 | 9.8 ± 3.6 | 1.000 |
Largest hourly deficit (kcal) | −986 ± 239 | −1021 ± 231 | −951 ± 269 | 0.668 |
REEratio (REEm/REEp) | REEm/FFM | WDEB < 0 kcal (h/day) | WDEB < −400 kcal (h/day) | Largest Hourly Deficit (kcal) | 24-h EB (kcal) | 24 h EA (kcal/kg FFM) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
T3 | 0.162 | 0.655 | 0.190 | 0.599 | 0.532 | 0.113 | 0.487 | 0.153 | −0.564 | 0.090 | −0.456 | 0.185 | −0.234 | 0.514 |
Cortisol | 0.144 | 0.691 | 0.208 | 0.565 | −0.426 | 0.219 | −0.498 | 0.143 | 0.206 | 0.568 | 0.188 | 0.602 | 0.208 | 0.564 |
IGF-1 | 0.771 | 0.009 * | 0.590 | 0.072 | 0.106 | 0.771 | 0.223 | 0.536 | −0.356 | 0.313 | 0.222 | 0.538 | 0.381 | 0.277 |
GH | 0.566 | 0.088 | 0.509 | 0.133 | 0.275 | 0.442 | 0.475 | 0.165 | −0.448 | 0.194 | −0.117 | 0.748 | −0.055 | 0.880 |
Insulin | 0.151 | 0.678 | 0.046 | 0.899 | 0.043 | 0.906 | 0.108 | 0.767 | -0.102 | 0.778 | 0.058 | 0.874 | 0.201 | 0.577 |
Testosterone | −0.552 | 0.098 | −0.439 | 0.205 | −0.029 | 0.938 | −0.173 | 0.632 | 0.497 | 0.144 | −0.067 | 0.853 | −0.287 | 0.421 |
Leptin | 0.308 | 0.387 | 0.293 | 0.410 | 0.197 | 0.585 | 0.238 | 0.508 | −0.242 | 0.501 | −0.189 | 0.601 | −0.062 | 0.866 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Moto, K.; Han, S.; Oh, T.; Taguchi, M. Within-Day Energy Balance and Metabolic Suppression in Male Collegiate Soccer Players. Nutrients 2021, 13, 2644. https://doi.org/10.3390/nu13082644
Lee S, Moto K, Han S, Oh T, Taguchi M. Within-Day Energy Balance and Metabolic Suppression in Male Collegiate Soccer Players. Nutrients. 2021; 13(8):2644. https://doi.org/10.3390/nu13082644
Chicago/Turabian StyleLee, Sihyung, Kuniko Moto, Seungah Han, Taewoong Oh, and Motoko Taguchi. 2021. "Within-Day Energy Balance and Metabolic Suppression in Male Collegiate Soccer Players" Nutrients 13, no. 8: 2644. https://doi.org/10.3390/nu13082644
APA StyleLee, S., Moto, K., Han, S., Oh, T., & Taguchi, M. (2021). Within-Day Energy Balance and Metabolic Suppression in Male Collegiate Soccer Players. Nutrients, 13(8), 2644. https://doi.org/10.3390/nu13082644