Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Characterization of U-ACP Nanofertilizers
2.2. Plant Material and Fertilization Treatments
2.3. Climate
2.4. Leaf Chlorophyll Content
2.5. Yield, Yield Components, and Grape Analysis
2.6. Determination of the Grape Volatile Compounds
2.7. Statistical Analysis
3. Results
3.1. Production and Characterization of U-ACP Nanofertilizers
3.2. Climate
3.3. Leaf Chlorophyll Content
3.4. Yield, Yield Components and Must Quality
3.5. Grape Volatile Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alonso, A.D. How “green” are small wineries? western australia’s case. Br. Food J. 2010, 112, 155–170. [Google Scholar] [CrossRef]
- Santiago-Brown, I.; Metcalfe, A.; Jerram, C.; Collins, C. Transnational comparison of sustainability assessment programs for viticulture and a case-study on programs’ engagement processes. Sustainability 2014, 6, 2031–2066. [Google Scholar] [CrossRef] [Green Version]
- Sonoda, K.; Hashimoto, Y.; Wang, S.L.; Ban, T. Copper and zinc in vineyard and orchard soils at millimeter vertical resolution. Sci. Total Environ. 2019, 689, 958–962. [Google Scholar] [CrossRef] [PubMed]
- Stellin, F.; Gavinelli, F.; Stevanato, P.; Concheri, G.; Squartini, A.; Paoletti, M.G. Effects of different concentrations of glyphosate (Roundup 360®) on earthworms (Octodrilus complanatus, Lumbricus terrestris and Aporrectodea caliginosa) in vineyards in the North-East of Italy. Appl. Soil Ecol. 2018, 123, 802–808. [Google Scholar] [CrossRef]
- Congreves, K.; Vyn, R.; Van Eerd, L. Evaluation of Post-Harvest Organic Carbon Amendments as a Strategy to Minimize Nitrogen Losses in Cole Crop Production. Agronomy 2013, 3, 181. [Google Scholar] [CrossRef]
- Schmitt, D.E.; Comin, J.J.; Gatiboni, L.C.; Tiecher, T.; Lorensini, F.; de Melo, G.W.B.; Girotto, E.; Guardini, R.; Heinzen, J.; Brunetto, G. Phosphorus fractions in sandy soils of vineyards in southern Brazil. Rev. Bras. Ciência Solo 2013, 37, 472–481. [Google Scholar] [CrossRef]
- De Matos, M.; Mattos, B.D.; Tardy, B.L.; Rojas, O.J.; Magalhães, W.L.E. Use of Biogenic Silica in Porous Alginate Matrices for Sustainable Fertilization with Tailored Nutrient Delivery. ACS Sustain. Chem. Eng. 2018, 6, 2716–2723. [Google Scholar] [CrossRef]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Tubiello, F.N. Synthetic Fertilizers. Available online: http://www.fao.org/faostat/en/#data/GY (accessed on 30 April 2021).
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Chapter 8 Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar]
- Jarosiewicz, A.; Tomaszewska, M. Controlled-release NPK fertilizer encapsulated by polymeric membranes. J. Agric. Food Chem. 2003, 51, 413–417. [Google Scholar] [CrossRef]
- Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Controlled release micronutrient fertilizers for precision agriculture—A review. Sci. Total Environ. 2020, 712, 136365. [Google Scholar] [CrossRef]
- Mateo-Marín, N.; Quílez, D.; Isla, R. Utility of stabilized nitrogen fertilizers to reduce nitrate leaching under optimal management practices. J. Plant Nutr. Soil Sci. 2020, 183, 567–578. [Google Scholar] [CrossRef]
- Landis, T.D.; Dumroese, R.K. Using polymer-coated controlled-release fertilizers in the nursery and after outplanting. For. Nurs. Notes 2009, Winter, 5–12. [Google Scholar]
- Fernández-Escobar, R.; Benlloch, M.; Herrera, E.; García-Novelo, J.M. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Sci. Hortic. 2004, 101, 39–49. [Google Scholar] [CrossRef]
- Van Geel, M.; De Beenhouwer, M.; Ceulemans, T.; Caes, K.; Ceustermans, A.; Bylemans, D.; Gomand, A.; Lievens, B.; Honnay, O. Application of slow-release phosphorus fertilizers increases arbuscular mycorrhizal fungal diversity in the roots of apple trees. Plant Soil 2016, 402, 291–301. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, X.; Yang, Y.; Gao, B.; Wan, Y.; Li, Y.C.; Cheng, D. Activated-Lignite-Based Super Large Granular Slow-Release Fertilizers Improve Apple Tree Growth: Synthesis, Characterizations, and Laboratory and Field Evaluations. J. Agric. Food Chem. 2017, 65, 5879–5889. [Google Scholar] [CrossRef]
- Gatti, M.; Schippa, M.; Garavani, A.; Squeri, C.; Frioni, T.; Dosso, P.; Poni, S. High potential of variable rate fertilization combined with a controlled released nitrogen form at affecting cv. Barbera vines behavior. Eur. J. Agron. 2020, 112, 125949. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Subhani, T.; Husain, S.W. Synthesis and characterization of silica nanoparticles from clay. J. Asian Ceram. Soc. 2016, 4, 91–96. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Kolenčík, M.; Nemček, L.; Šebesta, M.; Urík, M.; Ernst, D.; Kratošová, G.; Koničková, Z. Effect of TiO2 as Plant Growth-Stimulating Nanomaterial on Crop Production. In Plant Responses to Nanomaterials; Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Chauhan, D.K., Eds.; Springer International Publishing: Zurich, Switzerland, 2021; pp. 129–144. ISBN 978-3-030-36739-8. [Google Scholar]
- Prasad, K.; Jha, A.K. ZnO Nanoparticles: Synthesis and Adsorption Study. Nat. Sci. 2009, 1, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Mozafari, A.A.; Asl, A.G.; Ghaderi, N. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiol. Mol. Biol. Plants 2018, 24, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Wassel, A.E.H.; Wasfy, M.E.; Mohamed, M. Response of flame seedless grapevines to foliar application of nanofertilizers. J. Product. Dev. 2019, 22, 469–485. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Rodríguez, G.B.; Dal Sasso, G.; Carmona, F.J.; Miguel-Rojas, C.; Pérez-De-Luque, A.; Masciocchi, N.; Guagliardi, A.; Delgado-López, J.M. Engineering Biomimetic Calcium Phosphate Nanoparticles: A Green Synthesis of Slow-Release Multinutrient (NPK) Nanofertilizers. ACS Appl. Bio Mater. 2020, 3, 1344–1353. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, G.B.; Miguel-Rojas, C.; Montanha, G.S.; Carmona, F.J.; Dal Sasso, G.; Sillero, J.C.; Pedersen, J.S.; Masciocchi, N.; Guagliardi, A.; Pérez-De-Luque, A.; et al. Reducing nitrogen dosage in triticum durum plants with urea-doped nanofertilizers. Nanomaterials 2020, 10, 1043. [Google Scholar] [CrossRef] [PubMed]
- Carmona, F.J.; Dal Sasso, G.; Bertolotti, F.; Ramírez-Rodríguez, G.B.; Delgado-López, J.M.; Pedersen, J.S.; Masciocchi, N.; Guagliardi, A. The role of nanoparticle structure and morphology in the dissolution kinetics and nutrient release of nitrate-doped calcium phosphate nanofertilizers. Sci. Rep. 2020, 10, 12396. [Google Scholar] [CrossRef]
- Carmona, F.J.; Dal Sasso, G.; Ramírez-Rodríguez, G.B.; Pii, Y.; Delgado-López, J.M.; Guagliardi, A.; Masciocchi, N. Urea-functionalized amorphous calcium phosphate nanofertilizers: Optimizing the synthetic strategy towards environmental sustainability and manufacturing costs. Sci. Rep. 2021, 11, 3419. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, P.; Hunter, M.N.; Kopittke, P.M. Bioavailability and movement of hydroxyapatite nanoparticles (HA-NPs) applied as a phosphorus fertiliser in soils. Environ. Sci. Nano 2018, 5, 2888–2898. [Google Scholar] [CrossRef]
- Epple, M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 2018, 77, 1–14. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Ramírez-Rodríguez, G.B.; Carmona, F.J.; Martínez-Vidaurre, J.M.; Masciocchi, N.; Guagliardi, A.; Garde-Cerdán, T.; Delgado-López, J.M. Towards a more sustainable viticulture: Foliar application of N-doped calcium phosphate nanoparticles on Tempranillo grapes. J. Sci. Food Agric. 2020, 101, 1307–1313. [Google Scholar] [CrossRef]
- Webster, D.R.; Edwards, C.G.; Spayd, S.E.; Peterson, J.C.; Seymour, B.J. Influence of vineyard nitrogen fertilization on the concentrations of monoterpenes, higher alcohols, and esters in aged riesling wines. Am. J. Enol. Vitic. 1993, 44, 275–284. [Google Scholar]
- Bell, S.J.; Robson, A. Effect of nitrogen fertilization on growth, canopy density, and yield of Vitis vinifera L. cv. Cabernet Sauvignon. Am. J. Enol. Vitic. 1999, 50, 351–358. [Google Scholar]
- Holzapfel, B.P.; Treeby, M.T. Effects of timing and rate of N supply on leaf nitrogen status, grape yield and juice composition from Shiraz grapevines grafted to one of three different rootstocks. Aust. J. Grape Wine Res. 2007, 13, 14–22. [Google Scholar] [CrossRef]
- Schreiner, R.P.; Scagel, C.F.; Baham, J. Nutrient uptake and distribution in a mature “pinot noir” vineyard. HortScience 2006, 41, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Treeby, M.T.; Goldspink, B.H.; Nicholas, P.R. 8.3 Nutrient in the soil. In Soil, Irrigation and Nutrition; Nicholas, P., Ed.; South Australian Research and Development Institute: Adelaide, SA, Australia, 2004; pp. 181–183. ISBN 1875130403. [Google Scholar]
- Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.E.; Zufferey, V.; Spring, J.-L.; Viret, O.; Marin-Carbonne, J.; Van Leeuwen, C. Understanding and managing nitrogen nutrition in grapevine: A review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
- Fregoni, M. Nutrient Needs in Vine Production. In Nutrient Balances and Fertilizer Needs in Temperate Agriculture, Proceedings of the 18th Colloquium of the International Potash Institute, Gardone-Riviera, Italy, 18–22 June 1984; International Potash Institute: Bern, Switzerland, 1984; pp. 319–332. [Google Scholar]
- Tomasi, D.; Gaiotti, F.; Petoumenou, D.; Lovat, L.; Belfiore, N.; Boscaro, D.; Mian, G. Winter pruning: Effect on root density, root distribution and root/canopy ratio in vitis vinifera cv. Pinot Gris. Agronomy 2020, 10, 1509. [Google Scholar] [CrossRef]
- Nicolini, G.; Larcher, R.; Versini, G. Status of yeast assimilable nitrogen in Italian grape musts and effects of variety, ripening and vintage. Vitis J. Grapevine Res. 2004, 43, 89–96. [Google Scholar]
- De Matos, A.D.; Longo, E.; Chiotti, D.; Pedri, U.; Eisenstecken, D.; Sanoll, C.; Robatscher, P.; Boselli, E. Pinot blanc: Impact of the winemaking variables on the evolution of the phenolic, volatile and sensory profiles. Foods 2020, 9, 499. [Google Scholar] [CrossRef] [Green Version]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook; U.S. Secretary of Commerce on behalf of the United States of America, Ed.; NIST Stand.; U.S. Secretary of Commerce on behalf of the United States of America: Gaithersburg, MD, USA, 2019.
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Tang, Y.; Horikoshi, M.; Li, W. ggfortify: Unified interface to visualize statistical results of popular R packages. R J. 2016, 8, 478–489. [Google Scholar] [CrossRef] [Green Version]
- Wickman, H. ggplot2, 2nd ed.; Gentleman, R., Hornik, K., Parmigiani, G., Eds.; Springer International Publishing: Houston, TX, USA, 2016. [Google Scholar]
- Mendiburu, F. Statistical Procedures for Agricultural Research. Available online: http://tarwi.lamolina.edu.pe/~fmendiburu (accessed on 19 March 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Combes, C.; Rey, C. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater. 2010, 6, 3362–3378. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.G.; Irish, D.E. Raman and infrared spectral study of magnesium nitrate-water systems. J. Phys. Chem. 1973, 77, 52–57. [Google Scholar] [CrossRef]
- Keuleers, R.; Desseyn, H.O.; Rousseau, B.; Van Alsenoy, C. Vibrational Analysis of Urea. J. Phys. Chem. A 1999, 103, 4621–4630. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Nanodimensional and nanocrystalline hydroxyapatite and other calcium orthophosphates. Hydroxyapatite Synth. Prop. Appl. 2013, 2, 1975–2045. [Google Scholar]
- Incrocci, L.; Massa, D.; Pardossi, A. New trends in the fertigation management of irrigated vegetable crops. Horticulturae 2017, 3, 37. [Google Scholar] [CrossRef]
- Li, Q.; Xu, C.; Yin, C.; Kong, L.; Qin, Y.; Hou, Y.; Wang, H.; Zhao, L. Evaluation of fertigation technique for phosphorus application of maize in the semi-arid region of northeast China. Plant Soil Environ. 2019, 65, 401–407. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Santamaría, P.; Rubio-Bretón, P.; González-Arenzana, L.; López-Alfaro, I.; López, R. Foliar application of proline, phenylalanine, and urea to Tempranillo vines: Effect on grape volatile composition and comparison with the use of commercial nitrogen fertilizers. LWT Food Sci. Technol. 2015, 60, 684–689. [Google Scholar] [CrossRef]
- Canoura, C.; Kelly, M.T.; Ojeda, H. Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah grapeberries. Food Chem. 2018, 241, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Brunetto, G.; Trentin, G.; Ceretta, C.A.; Girotto, E.; Lorensini, F.; Miotto, A.; Moser, G.R.Z.; de Melo, G.W. Use of the SPAD-502 in Estimating Nitrogen Content in Leaves and Grape Yield in Grapevines in Soils with Different Texture. Am. J. Plant Sci. 2012, 3, 1546–1561. [Google Scholar] [CrossRef] [Green Version]
- Cerovic, Z.G.; Ben Ghozlen, N.; Milhade, C.; Obert, M.; Debuisson, S.; Le Moigne, M. Nondestructive Diagnostic Test for Nitrogen Nutrition of Grapevine (Vitis vinifera L.) Based on Dualex Leaf-Clip Measurements in the Field. J. Agric. Food Chem. 2015, 63, 3669–3680. [Google Scholar] [CrossRef]
- Vrignon-Brenas, S.; Metay, A.; Leporatti, R.; Gharibi, S.; Fraga, A.; Dauzat, M.; Rolland, G.; Pellegrino, A. Gradual responses of grapevine yield components and carbon status to nitrogen supply. OENO One 2019, 53, 289–306. [Google Scholar] [CrossRef]
- Porro, D.; Dorigatti, C.; Stefanini, M.; Ceschini, A. Use of SPAD meter in diagnosis of nutritional status in apple and grapevine. Acta Hortic. 2001, 564, 243–252. [Google Scholar] [CrossRef]
- Spayd, S.E.; Wample, R.L.; Stevens, R.G.; Evans, R.G.; Kawakami, K.A. Nitrogen fertilization of White Riesling in Washington: Effects on petiole nutrient concentration, yield, yield components, and vegetative growth. Am. J. Enol. Vitic. 1993, 44, 378–386. [Google Scholar]
- Zerihun, A.; Treeby, M.T. Biomass distribution and nitrate assimilation in response to N supply for Vitis vinifera L. cv. Cabernet Sauvignon on five Vitis rootstock genotypes. Aust. J. Grape Wine Res. 2002, 8, 157–162. [Google Scholar] [CrossRef]
- Keller, M.; Kummer, M.; Vasconcelos, M.C. Reproductive growth of grapevines in response to nitrogen supply and rootstock. Aust. J. Grape Wine Res. 2001, 7, 12–18. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Ancín-Azpilicueta, C.; Nieto-Rojo, R.; Gómez-Cordón, J. Effect of foliar urea fertilisation on volatile compounds in Tempranillo wine. J. Sci. Food Agric. 2013, 93, 1485–1491. [Google Scholar] [CrossRef]
- Treeby, M.T.; Wheatley, D.M. Effect of nitrogen fertiliser on nitrogen partitioning and pool sizes in irrigated Sultana grapevines. Aust. J. Exp. Agric. 2006, 46, 1207–1215. [Google Scholar] [CrossRef]
- Ingledew, W.M.; Kunkee, R.E. Factors Influencing Sluggish Fermentations of Grape Juice. Am. J. Enol. Vitic. 1985, 36, 65–76. [Google Scholar]
- Lacroux, F.; Tregoat, O.; van Leeuwen, C.; Pons, A.; Tominaga, T.; Lavigne-Cruège, V.; Dubourdieu, D. Effect of Foliar Nitrogen and Sulphur Application on Aromatic Expression of Vitis vinifera l. cv. Sauvignon Blanc. J. Int. Sci. Vigne Vin 2008, 42, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Myburgh, P.A.; Howell, C.L. Comparison of three different fertigation strategies for drip irrigated table grapes—Part I. Soil water status, root system characteristics and plant water status. S. Afr. J. Enol. Vitic. 2012, 33. [Google Scholar] [CrossRef] [Green Version]
- Lasa, B.; Menendez, S.; Sagastizabal, K.; Cervantes, M.E.C.; Irigoyen, I.; Muro, J.; Aparicio-Tejo, P.M.; Ariz, I. Foliar application of urea to “Sauvignon Blanc” and “Merlot” vines: Doses and time of application. Plant Growth Regul. 2012, 67, 73–81. [Google Scholar] [CrossRef]
- Upadhyaya, H.; Begum, L.; Dey, B.; Nath, P.K.; Panda, S.K. Impact of Calcium Phosphate Nanoparticles on Rice Plant. J. Plant Sci. Phytopathol. 2017, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
Fertilization Treatment | N Source | Application Method | Tot kg N ha−1 yr−1 |
---|---|---|---|
C | None | - | 0 |
N1 | Conventional fertilizer NH4NO3 | Soil application | 45 |
N2 | U-ACP | Fertigation | 36 |
N3 | Conventional fertilizer NH4NO3 + U-ACP | Soil application + Foliar application | 36 |
Year | GDD10 | T Avg (°C) | T Max (°C) | T Min (°C) | Σ Rainfall (mm) |
---|---|---|---|---|---|
2019 | 1970 | 19.2 | 24.8 | 13.9 | 843 |
2020 | 1898 | 18.8 | 24.8 | 13.0 | 839 |
2019 | 2020 | Average 2019–2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PARAMETER | C | N1 | N2 | N3 | C | N1 | N2 | N3 | C | N1 | N2 | N3 |
Yield (kg/vine) | 2,0 b | 2,6 a | 2,3 ab | 2,5 a | 1,5 b | 2,4 a | 2,1 a | 1,7 ab | 1,8 b | 2,5 a | 2,2 a | 2,1 a |
Berry weight (g) | 1,3 | 1,2 | 1,3 | 1,3 | 1,2 | 1,4 | 1,3 | 1,3 | 1,3 | 1,3 | 1,3 | 1,3 |
Number of bunches | 27 | 28 | 27 | 32 | 21 | 23 | 20 | 19 | 24 | 26 | 24 | 26 |
Bunch weight (g) | 75 b | 96 a | 83 a | 79 ab | 73 b | 102 a | 107 a | 97 a | 74 b | 99 a | 95 a | 88 ab |
TSS (Brix) | 21,9 | 21 | 21,7 | 21,6 | 20,1 a | 18,7 b | 19,2 ab | 20,0 a | 21,0 | 19,8 | 20,5 | 20,8 |
Titratable acidity (g L−1) | 8,3 | 7,8 | 8,3 | 7,7 | 5,7 | 6,3 | 6,5 | 5,7 | 7,0 | 7,1 | 7,4 | 6,7 |
YAN (mg L−1) | 43,2 | 51,4 | 67,3 | 60,2 | 73,6 b | 78,5 ab | 112,6 a | 85,9 ab | 58,4 | 65,0 | 90,0 | 73,1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaiotti, F.; Lucchetta, M.; Rodegher, G.; Lorenzoni, D.; Longo, E.; Boselli, E.; Cesco, S.; Belfiore, N.; Lovat, L.; Delgado-López, J.M.; et al. Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines. Agronomy 2021, 11, 1026. https://doi.org/10.3390/agronomy11061026
Gaiotti F, Lucchetta M, Rodegher G, Lorenzoni D, Longo E, Boselli E, Cesco S, Belfiore N, Lovat L, Delgado-López JM, et al. Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines. Agronomy. 2021; 11(6):1026. https://doi.org/10.3390/agronomy11061026
Chicago/Turabian StyleGaiotti, Federica, Marco Lucchetta, Giacomo Rodegher, Daniel Lorenzoni, Edoardo Longo, Emanuele Boselli, Stefano Cesco, Nicola Belfiore, Lorenzo Lovat, José Manuel Delgado-López, and et al. 2021. "Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines" Agronomy 11, no. 6: 1026. https://doi.org/10.3390/agronomy11061026
APA StyleGaiotti, F., Lucchetta, M., Rodegher, G., Lorenzoni, D., Longo, E., Boselli, E., Cesco, S., Belfiore, N., Lovat, L., Delgado-López, J. M., Carmona, F. J., Guagliardi, A., Masciocchi, N., & Pii, Y. (2021). Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines. Agronomy, 11(6), 1026. https://doi.org/10.3390/agronomy11061026