Entropy, Fidelity, and Entanglement During Digitized Adiabatic Quantum Computing to Form a Greenberger–Horne–Zeilinger (GHZ) State
Abstract
1. Introduction
2. Methods
2.1. Digitized Adiabatic Quantum Computing Process
2.2. Conditions for Validity of the Adiabatic Theorem
2.3. Choices of Quantum Computers and Quantum Simulators for Adiabatic Evolution
2.4. Wave Function, Operators, and Circuit for Digitization
2.5. Density Matrices and von Neumann Entropy
2.6. GHZ State Fidelity and Purity of the Density Matrix
2.7. GHZ Witness
= κ02/2 ( α*3 α3 + α3 β*3 + α*3 β3 + β*3 β3 )
+ (3/2) κ0 κ1 ( α*2 α3 β − α4 β*2 + α*2 β4 − α β*2 β3 )
+ (3/2) κ0 κ1 ( α*3 α2 β* − α*4 β2 + α2 β*4 − α* β*3 β2 )
+ (9/2) κ12 ( α*2 α2 β*β − α3 β*3 − α*3 β3 + α*α β*2 β2 )
− η1 (κ02 + 3 κ12 − 1) − η2 (|α|2 + |β|2 − 1),
2.8. Entanglement Entropy
3. Results
3.1. Density Matrices from Quantum State Tomography
3.2. The von Neumann Entropy During the Digitized Adiabatic Computing Process
3.3. The GHZ Witness During the Digitized Adiabatic Computing Process
3.4. Fidelity to the GHZ State
3.5. Purity as an Indicator That States Are Mixed
3.6. Single-Qubit von Neumann Entropies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHZ | Greenberger–Horne–Zeilinger |
NISQ | Noisy Intermediate-Scale Quantum |
ECR | Echoed Cross-Resonance gate |
SX | Error during the application of a single-qubit X gate |
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum computing: A taxonomy, systematic review, and future directions. Softw. Pract. Exp. 2022, 52, 66–114. [Google Scholar] [CrossRef]
- Benioff, P. Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 1980, 22, 515–546. [Google Scholar]
- Benioff, P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 1980, 22, 563–591. [Google Scholar]
- Benioff, P. Quantum mechanical models of Turing machines that dissipate no energy. Phys. Rev. Lett. 1982, 48, 1581–1585. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum theory, the Church-Turing principle, and the universal quantum computer. Proc. Roy. Soc. London Ser. A 1985, 400, 97–117. [Google Scholar]
- Deutsch, D.; Jozsa, R. Rapid solutions of problems by quantum computation. Proc. Roy. Soc. London Ser. A 1992, 439, 553–558. [Google Scholar]
- Cleve, R.; Ekert, A.; Macchiavello, C.; Mosca, M. Quantum algorithms revisited. Proc. Roy. Soc. London Ser. A 1998, 454, 339–354. [Google Scholar] [CrossRef]
- Bernstein, E.; Vazirani, U. Quantum complexity theory. SIAM J. Comp. 1997, 26, 1411–1473. [Google Scholar] [CrossRef]
- Simon, D.R. On the power of quantum computation. SIAM J. Comp. 1997, 26, 1474–1483. [Google Scholar] [CrossRef]
- Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999, 41, 303–332. [Google Scholar] [CrossRef]
- Lloyd, S. Universal quantum simulators. Science 1996, 273, 1073–1078. [Google Scholar] [CrossRef]
- Lidar, D.A.; Wang, H.B. Calculating the thermal rate constant with exponential speedup on quantum computer. Phys. Rev. E 1999, 59, 2429–2438. [Google Scholar] [CrossRef]
- Abrams, D.S.; Lloyd, S. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 1999, 83, 5162–5165. [Google Scholar] [CrossRef]
- Ortiz, G.; Gubernatis, J.E.; Knill, E.; Laflamme, R. Quantum algorithms for fermionic simulations. Phys. Rev. A 2001, 64, 022319. [Google Scholar] [CrossRef]
- Childs, A.M.; Maslov, D.; Nam, Y.; Ross, N.J.; Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. USA 2018, 115, 9456–9461. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Greenberger, D.M.; Horne, M.A.; Zeilinger, A. Going beyond Bell’s Theorem. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe; Kafatos, M., Ed.; Kluwer: Dordrecht, The Netherlands, 1989; pp. 69–72. [Google Scholar]
- Greenberger, D.; Horne, M.; Shimony, A.; Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 1990, 58, 1131–1143. [Google Scholar] [CrossRef]
- Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Las Heras, U.; Babbush, R.; Fowler, A.G.; Campbell, B.; Chen, Y.; et al. Digitized adiabatic quantum computing with a superconducting circuit. Nature 2016, 534, 222–226. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhang, J.Y.; Byrd, M.S.; Wu, L.A. Trotterized adiabatic quantum simulation and its application to simple all-optical systems. New J. Phys. 2020, 22, 053012. [Google Scholar] [CrossRef]
- Born, M.; Fock, V. Beweis des Adiabatensatzes. Z. Phys. 1928, 51, 165–180. [Google Scholar] [CrossRef]
- Kato, T. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 1950, 5, 435–439. [Google Scholar] [CrossRef]
- Jansen, S.; Ruskai, M.-B.; Seller, R. Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 2007, 48, 102111. [Google Scholar] [CrossRef]
- Amin, M.H.S. Consistency of the adiabatic theorem. Phys. Rev. Lett. 2009, 102, 220401. [Google Scholar] [CrossRef] [PubMed]
- Comparat, D. General conditions for quantum adiabatic evolution. Phys. Rev. A 2009, 80, 012106. [Google Scholar] [CrossRef]
- Elgart, A.; Hagedorn, G.A. A note on the switching adiabatic theorem. J. Math. Phys. 2012, 53, 102202. [Google Scholar] [CrossRef]
- Wiebe, N.; Babcock, N.S. Improved error-scaling for adiabatic quantum evolutions. New J. Phys. 2012, 14, 013024. [Google Scholar] [CrossRef]
- Ge, Y.; Molnár, A.; Cirac, J.I. Rapid adiabatic preparation of injective projected entangled pair states and Gibbs states. Phys. Rev. Lett. 2016, 116, 080503. [Google Scholar] [CrossRef]
- Burgarth, D.; Facchi, P.; Gramegna, G.; Yuasa, K. One bound to rule them all: From adiabatic to Zeno. Quantum 2022, 6, 737. [Google Scholar] [CrossRef]
- Boixo, S.; Knill, E.; Somma, R. Eigenpath traversal by phase randomization. Quant. Info. Comp. 2009, 9, 833–855. [Google Scholar] [CrossRef]
- Cohen, T.D.; Oh, H. Corrections to adiabatic behavior for long paths. Phys. Rev. A 2024, 110, 062601. [Google Scholar] [CrossRef]
- Zener, C. Non-adiabatic crossing of energy levels. Proc. Roy. Soc. A 1932, 137, 696–702. [Google Scholar]
- Joye, A. Proof of the Landau-Zener formula. Asymptot. Anal. 1994, 9, 209–258. [Google Scholar] [CrossRef]
- Nenciu, G. Linear adiabatic theory. Exponential estimates. Commun. Math. Phys. 1993, 152, 479–496. [Google Scholar] [CrossRef]
- Hagedorn, G.A.; Joye, A. Elementary exponential error estimates for the adiabatic approximation. J. Math. Anal. Appl. 2002, 267, 235. [Google Scholar] [CrossRef]
- Albash, T.; Lidar, D.A. Adiabatic quantum computing. Rev. Mod. Phys. 2018, 90, 015002. [Google Scholar] [CrossRef]
- Kassal, I.; Whitfield, J.D.; Perdomo-Ortiz, A.; Yung, M.H.; Aspuru-Guzik, A. Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 2011, 62, 185–207. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.D.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.D.; et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.; Bravyi, S.; Motta, M.; Chan, G.K.-L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 2020, 120, 12685–12717. [Google Scholar] [CrossRef]
- Pérez, E.A.C.; Bonitati, J.; Lee, D.; Quaglioni, S.; Wendt, K.A. Quantum state preparation by adiabatic evolution with custom gates. Phys. Rev. A 2022, 105, 032403. [Google Scholar] [CrossRef]
- Perdomo, A.; Truncik, C.; Tubert-Brohman, I.; Rose, G.; Aspuru-Guzik, A. Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models. Phys. Rev. A 2008, 78, 012320. [Google Scholar] [CrossRef]
- Murta, B.; Catarina, G.; Fernández-Rossier, J. Berry phase estimation in gate-based adiabatic quantum simulation. Phys. Rev. A 2020, 101, 020302. [Google Scholar] [CrossRef]
- Sieberer, L.M.; Olsacher, T.; Elben, A.; Heyl, M.; Hauke, P.; Haake, F.; Zoller, P. Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top. npj Quantum Inf. 2019, 5, 78. [Google Scholar] [CrossRef]
- Pierangeli, D.; Marcucci, G.; Conti, C. Adiabatic evolution on a spatial-photonic Ising machine. Optica 2020, 7, 1535–1543. [Google Scholar] [CrossRef]
- Zhukov, A.A.; Lebedev, A.V.; Pogosov, W.V. Grover’s search meets Ising models: A quantum algorithm for finding low-energy states. Comp. Phys. Comm. 2025, 313, 109627. [Google Scholar] [CrossRef]
- Aharonov, D.; van Dam, W.; Kempe, J.; Landau, Z.; Lloyd, S.; Regev, O. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 2008, 50, 755–787. [Google Scholar] [CrossRef]
- Hegade, N.N.; Paul, K.; Albarrán-Arriagada, F.; Chen, X.; Solano, E. Digitized adiabatic quantum factorization. Phys. Rev. A 2021, 104, L050403. [Google Scholar] [CrossRef]
- Roland, J.; Cerf, N.J. Quantum search by local adiabatic evolution. Phys. Rev. A 2002, 65, 042308. [Google Scholar] [CrossRef]
- Schrock, J.; McCaskey, A.J.; Hamilton, K.E.; Humble, T.S.; Imam, N. Recall performance for content-addressable memory using adiabatic quantum optimization. Entropy 2017, 19, 500. [Google Scholar] [CrossRef]
- Atia, Y.; Oren, Y.; Katz, N. Robust diabatic Grover search by Landau-Zener-Stückelberg oscillations. Entropy 2019, 21, 937. [Google Scholar] [CrossRef]
- Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 2001, 292, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Childs, A.M.; Farhi, E.; Goldstone, J.; Gutmann, S. Finding cliques by quantum adiabatic evolution. Quantum Inf. Comput. 2002, 2, 181–191. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004. [Google Scholar] [CrossRef]
- ibm_sherbrooke, a 127-qubit IBM Quantum Computer with an Eagle r3 Processor. Available online: https://quantum.ibm.com/services/resources?tab=systems&system=ibm_sherbrooke (accessed on 28 June 2025).
- ibm_brisbane, a 127-Qubit IBM Quantum Computer with an Eagle r3 Processor. Available online: https://quantum.cloud.ibm.com/computers?tab=systems&system=ibm_brisbane (accessed on 28 June 2025).
- ibm_aachen, a 156-Qubit IBM Quantum Computer with a Heron r2 Processor. Available online: https://quantum.ibm.com/services/resources?system=ibm_aachen (accessed on 28 June 2025).
- ibm_perth, a 7-Qubit IBM Quantum Computer, Retired 11/28/2023. Available online: https://quantum.cloud.ibm.com/docs/en/guides/retired-qpus (accessed on 21 August 2025).
- Device Backend Noise Model Simulations, Qiskit|Ecosystem, Qiskit Aer 0.17.1. Available online: https://qiskit.github.io/qiskit-aer/tutorials/2_device_noise_simulation.html (accessed on 28 June 2025).
- Fake Perth. Available online: https://quantum.cloud.ibm.com/docs/en/api/qiskit-ibm-runtime/fake-provider-fake-perth (accessed on 28 June 2025).
- Trotter, H.F. On the product of semi-groups of operators. Proc. Am. Math. Soc. 1959, 10, 545–551. [Google Scholar] [CrossRef]
- Suzuki, M. Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Comm. Math. Phys. 1976, 51, 183–190. [Google Scholar] [CrossRef]
- Salis, G.; Moll, N.; Roth, M.; Ganzhorn, M.; Filipp, S. Time-resolved tomography of a driven adiabatic quantum simulation. Phys. Rev. A 2020, 102, 062611. [Google Scholar] [CrossRef]
- von Neumann, J. Thermodynamik quantenmechanischer Gesamtheiten. Königliche Ges. Der Wiss. zu Göttingen Math. Phys. Kl. Nachrichten 1927, 1927, 273–291. [Google Scholar]
- Jaeger, G. Quantum Information: An Overview; Springer: Berlin, Germany, 2007. [Google Scholar]
- Pennini, F.; Plastino, A. Quantum purity as an information measure and Nernst law. Entropy 2023, 25, 1113. [Google Scholar] [CrossRef]
- Acín, A.; Bruß, D.; Lewenstein, M.; Sanpera, A. Classification of mixed three-qubit states. Phys. Rev. Lett. 2001, 87, 040401. [Google Scholar] [CrossRef]
- Eltschka, C.; Siewert, J. A quantitative witness for Greenberger-Horne-Zeilinger entanglement. Sci. Rep. 2012, 2, 942. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc. 1930, 26, 376–385. [Google Scholar] [CrossRef]
- Hill, S.; Wooters, W.K. Entanglement of a pair of quantum bits. Phys Rev. Lett. 1997, 78, 5022–5025. [Google Scholar] [CrossRef]
- Wooters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 907–908. [Google Scholar] [CrossRef]
- Kaufman, A.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Schittko, R.; Preiss, P.M.; Greiner, M. Quantum thermalization through entanglement in an isolated many-body system. Science 2016, 353, 794–800. [Google Scholar] [CrossRef]
- Omran, A.; Levine, H.; Keesling, A.; Semeghini, G.; Wang, T.T.; Ebadi, S.; Bernien, H.; Zibrov, A.S.; Pichler, H.; Choi, S.; et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 2019, 365, 570–574. [Google Scholar] [CrossRef]
- Resch, K.J.; Walther, P.; Zeilinger, A. Full characterization of a three-photon Greenberger-Horne-Zeilinger state using quantum state tomography. Phys. Rev. Lett. 2005, 94, 070402. [Google Scholar] [CrossRef] [PubMed]
- Pauli, W. Zur Quantenmechanik des magnetischen Elektrons. Z. Für Phys. 1927, 43, 601–623. [Google Scholar] [CrossRef]
- Weisstein, E.W. Kronecker product. From MathWorld—A Wolfram Resource. Available online: https://mathworld.wolfram.com/KroneckerProduct.html (accessed on 28 June 2025).
- Bocini, S.; Fagotti, M. Growing Schrödinger’s cat states by local unitary time evolution of product states. Phys. Rev. Res. 2024, 6, 033108. [Google Scholar] [CrossRef]
- Abragam, A. Principles of Nuclear Magnetism; Clarendon Press: Oxford, UK, 1983. [Google Scholar]
- Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.A.; Weinfurter, H. Elementary gates for quantum computation. Phys. Rev. A 1995, 52, 3457–3467. [Google Scholar] [CrossRef]
- Explore Gates and Circuits with the IBM Quantum Composer. Available online: https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer (accessed on 28 June 2025).
- Fano, U. Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 1957, 29, 74–93. [Google Scholar] [CrossRef]
- Tolman, R.C. The Principles of Statistical Mechanics; Dover: Garden City, NY, USA, 2010. [Google Scholar]
- Ungar, A.A. The density matrix for mixed state qubits and hyperbolic geometry. Quantum Inf. Comp. 2002, 2, 513–514. [Google Scholar] [CrossRef]
- Quantum State Tomography—Qiskit Experiments 0.4.0 Documentation. Available online: https://qiskit.org/documentation/experiments/tutorials/state_tomography.html (accessed on 19 January 2023).
- Smolin, J.A.; Gambetta, J.M.; Smith, G. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise. Phys. Rev. Lett. 2012, 108, 070502. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, Version 12.0.0.0; Wolfram Research, Inc.: Champaign, IL, USA, 2024.
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef]
- Acín, A.; Andrianov, A.; Costa, L.; Jané, E.; Latorre, J.I.; Tarrach, R. Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 2000, 85, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Dür, W.; Vidal, G.; Cirac, J.I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. 2000, 62, 062314. [Google Scholar] [CrossRef]
- Jordan, S.P.; Farhi, E.; Shor, P.W. Error correcting codes for adiabatic quantum computing. Phys. Rev. A 2006, 74, 052322. [Google Scholar] [CrossRef]
- Tang, J.; Xu, R.; Ding, Y.; Xu, X.; Ban, Y.; Yung, M.-H.; Pérez-Obiol, Z.; Platero, G.; Chen, X. Exploring ground states of Fermi-Hubbard model on honeycomb lattices with counterdiabaticity. npj Quantum Mater. 2024, 9, 87. [Google Scholar] [CrossRef]
- Lei, O. Infidelity analysis of digital counter-diabatic driving in simple two-qubit system. Entropy 2024, 26, 877. [Google Scholar] [CrossRef]
- Chandarana, P.; Hegade, N.N.; Montalban, I.; Solano, E.; Chen, X. Digitized counterdiabatic quantum algorithm for protein folding. Phys. Rev. Appl. 2023, 20, 014024. [Google Scholar] [CrossRef]
- Sun, D.; Chandarana, P.; Xin, Z.H.; Chen, X. Optimizing counterdiabaticity by variational quantum circuits. Philos. Trans. R. Soc. A 2022, 380, 20210282. [Google Scholar] [CrossRef]
- Hegade, N.N.; Chen, X.; Solano, E. Digitized counterdiabatic quantum optimization. Phys. Rev. Res. 2022, 4, L042030. [Google Scholar] [CrossRef]
- Schiffer, B.F.; van Vreumingen, D.; Tura, J.; Polla, S. Virtual mitigation of coherent non-adiabatic transitions by echo verification. Quantum 2024, 8, 1–14. [Google Scholar] [CrossRef]
- Xu, K.B.; Xie, T.Y.; Shi, F.Z.; Wang, Z.Y.; Xu, X.K.; Wang, P.F.; Wang, Y.; Plenio, M.B.; Du, J.F. Breaking the quantum adiabatic speed limit by jumping along geodesics. Sci. Adv. 2019, 5, eaax3800. [Google Scholar] [CrossRef]
- Linden, N.; Popescu, S. Good dynamics versus bad kinematics: Is entanglement needed for quantum computation? Phys. Rev. Lett. 2001, 87, 047901. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Xu, K.; Liu, W.X.; Yang, C.P.; Zheng, S.B.; Deng, H.; Xie, Q.W.; Huang, K.Q.; Guo, Q.J.; Zhang, L.B.; et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 2017, 119, 180511. [Google Scholar] [CrossRef] [PubMed]
- Sager, L.M.; Smart, S.E.; Mazziotti, D.A. Preparation of an exciton condensate of photons on a 53-qubit quantum computer. Phys. Rev. Res. 2020, 2, 043205. [Google Scholar] [CrossRef]
- Liao, H.R.; Hartnett, G.S.; Kakkar, A.; Tan, A.; Hush, M.; Mundada, P.S.; Biercuk, M.J.; and Baum, Y. Achieving computational gains with quantum error-correction primitives: Generation of long-range entanglement enhanced by error detection. PRX Quantum 2025, 6, 020331. [Google Scholar] [CrossRef]
- Tabia, G.N.M.; Chen, K.-S.; Hsieh, C.-Y.; Yin, Y.C.; Liang, Y.C. Entanglement transitivity problems. npj Quantum Inf. 2022, 8, 98. [Google Scholar] [CrossRef]
- Fröwis, F.; Sekatski, P.; Dür, W.; Gisin, N.; Sangouard, N. Macroscopic quantum states: Measures, fragility, and implementations. Rev. Mod. Phys. 2018, 90, 025004. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Jansen, N.D.; Loucks, M.; Gilbert, S.; Fleming-Dittenber, C.; Egbert, J.; Hunt, K.L.C. Shannon and von Neumann entropies of multi-qubit Schrödinger’s cat states. Phys. Chem. Chem. Phys. 2022, 24, 7666–7681. [Google Scholar] [CrossRef]
- Bravyi, S.; Cross, A.W.; Gambetta, J.M.; Maslov, D.; Rall, P.; Yoder, T.J. High-threshold and low-overhead fault-tolerant quantum memory. Nature 2024, 627, 778–782. [Google Scholar] [CrossRef]
- Yoder, T.J.; Schoute, E.; Rall, P.; Pritchett, E.; Gambetta, J.M.; Cross, A.W.; Carroll, M.; Beverland, M.E. Tour de gross: A modular quantum computer based on bivariate bicycle codes. arXiv 2025, arXiv:2506.03094. [Google Scholar] [CrossRef]
- Kosloff, R. Quantum thermodynamics: A dynamical viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Unification of the first law of quantum thermodynamics. New J. Phys. 2023, 25, 043019. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Quantum thermo-dynamical construction for driven open quantum systems. Quantum 2021, 5, 1–32. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Open system dynamics from thermodynamic compatibility. Phys. Rev. Res. 2021, 3, 023006. [Google Scholar] [CrossRef]
- Kosloff, R.; Levy, A. Quantum heat engines and refrigerators: Continuous devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, T.; Kosloff, R. Quantum lubrication: Suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 2006, 73, 025107. [Google Scholar] [CrossRef]
- Geva, E.; Kosloff, R. Three-level quantum amplifier as a heat engine: A study in finite-time thermodynamics. Phys. Rev. E 1994, 49, 3903–3918. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R.; Salamon, P. Quantum finite-time thermodynamics: Insight from a single qubit engine. Entropy 2020, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science 2016, 352, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Klatzow, J.; Becker, J.N.; Ledingham, P.M.; Weinzetl, C.; Kaczmarek, K.T.; Saunders, D.J.; Nunn, J.; Walmsley, I.A. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 2019, 122, 110601. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, R. Quantum molecular devices. ACS Phys. Chem. AU 2024, 4, 226–231. [Google Scholar] [CrossRef]
Computer | Slope | Intercept | R2 of Fit | Monotonic | Fidelity |
---|---|---|---|---|---|
ibm_sherbrooke | 0.123385 | 0.169847 | 0.989866 | Yes | 0.490356 |
ibm_brisbane | 0.202520 | 0.316726 | 0.982477 | Yes | 0.328328 |
Fake Sherbrooke | 0.009875 | 0.240661 | 0.622159 | No | 0.920438 |
Fake Brisbane | 0.016841 | 0.302194 | 0.853455 | No | 0.891524 |
Fake Aachen | 0.018197 | 0.384661 | 0.933290 | No | 0.867094 |
Fake Perth | 0.109992 | 0.441399 | 0.982121 | No | 0.634522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansen, N.D.; Hunt, K.L.C. Entropy, Fidelity, and Entanglement During Digitized Adiabatic Quantum Computing to Form a Greenberger–Horne–Zeilinger (GHZ) State. Entropy 2025, 27, 891. https://doi.org/10.3390/e27090891
Jansen ND, Hunt KLC. Entropy, Fidelity, and Entanglement During Digitized Adiabatic Quantum Computing to Form a Greenberger–Horne–Zeilinger (GHZ) State. Entropy. 2025; 27(9):891. https://doi.org/10.3390/e27090891
Chicago/Turabian StyleJansen, Nathan D., and Katharine L. C. Hunt. 2025. "Entropy, Fidelity, and Entanglement During Digitized Adiabatic Quantum Computing to Form a Greenberger–Horne–Zeilinger (GHZ) State" Entropy 27, no. 9: 891. https://doi.org/10.3390/e27090891
APA StyleJansen, N. D., & Hunt, K. L. C. (2025). Entropy, Fidelity, and Entanglement During Digitized Adiabatic Quantum Computing to Form a Greenberger–Horne–Zeilinger (GHZ) State. Entropy, 27(9), 891. https://doi.org/10.3390/e27090891