On Considering Unoccupied Sites in Ecological Models
Abstract
1. Introduction
2. PCA-Based Models
2.1. Competition
2.2. Predation
3. ODE-Based Models
3.1. Competition
3.2. Predation
4. Numerical Simulations
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balzter, H.; Braun, P.W.; Köhler, W. Cellular automata models for vegetation dynamics. Ecol. Model. 1998, 107, 113–125. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Silvestrini, B.; Nepstad, D.; Brando, P.; Rodrigues, H.; Alencar, A.; Coe, M.; Locks, C.; Lima, L.; Hissa, L.; et al. Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landsc. Ecol. 2012, 27, 585–598. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, L. Integrating a mixed-cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation. Land Degrad. Dev. 2022, 33, 1579. [Google Scholar] [CrossRef]
- Sirakoulis, G.C.; Karafyllidis, I.; Thanailakis, A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Model. 2000, 133, 209. [Google Scholar] [CrossRef]
- White, S.H.; Del Rey, A.M.; Sánchez, G.R. Modeling epidemics using cellular automata. Appl. Math. Comput. 2007, 186, 193. [Google Scholar] [CrossRef]
- Schimit, P.H.T. A model based on cellular automata to estimate the social isolation impact on COVID-19 spreading in Brazil. Comput. Methods Programs Biomed. 2021, 200, 105832. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.P.; Zhong, T.K.; Liu, M.T. Modeling crowd evacuation of a building based on seven methodological approaches. Build. Environ. 2009, 44, 437. [Google Scholar] [CrossRef]
- Chang, N.B.; Hossain, U.; Valencia, A.; Qiu, J.X.; Kapucu, N. The role of food-energy-water nexus analyses in urban growth models for urban sustainability: A review of synergistic framework. Sustain. Cities Soc. 2020, 63, 102486. [Google Scholar] [CrossRef]
- Rocha, A.C.; Monteiro, L.H.A. On the spread of charitable behavior in a social network: A model based on game theory. Netw. Heterog. Media 2023, 18, 842. [Google Scholar] [CrossRef]
- McCauley, E.; Wilson, W.G.; de Roos, A.M. Dynamics of age-structured and spatially structured predator-prey interactions: Individual-based models and population-level formulations. Am. Nat. 1993, 142, 412. [Google Scholar] [CrossRef] [PubMed]
- Boccara, N.; Cheong, K.; Oram, M. A probabilistic automata network epidemic model with births and deaths exhibiting cyclic behaviour. J. Phys. A-Math. Gen. 1994, 27, 1585. [Google Scholar] [CrossRef]
- Durrett, R.; Levin, S. The importance of being discrete (and spatial). Theor. Popul. Biol. 1994, 96, 363. [Google Scholar] [CrossRef]
- van der Laan, J.D.; Lhotka, L.; Hogeweg, P. Sequential predation: A multi-model study. J. Theor. Biol. 1995, 174, 149. [Google Scholar] [CrossRef]
- Sherratt, J.A.; Eagan, B.T.; Lewis, M.A. Oscillations and chaos behind predator-prey invasion: Mathematical artifact or ecological reality? Philos. Trans. R. Soc. B-Biol. Sci. 1997, 352, 21. [Google Scholar] [CrossRef]
- Ahmed, E.; Agiza, H.N.; Hassan, S.Z. On modeling hepatitis B transmission using cellular automata. J. Stat. Phys. 1998, 92, 707. [Google Scholar] [CrossRef]
- Durrett, R. Stochastic spatial models. SIAM Rev. 1999, 41, 677. [Google Scholar] [CrossRef]
- Fuentes, M.A.; Kuperman, M.N. Cellular automata and epidemiological models with spatial dependence. Phys. A Stat. Mech. Its Appl. 1999, 267, 471. [Google Scholar] [CrossRef]
- Keeling, M.J. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. B-Biol. Sci. 1999, 266, 859. [Google Scholar] [CrossRef]
- Antal, T.; Droz, M. Phase transitions and oscillations in a lattice prey-predator model. Phys. Rev. E 2001, 63, 056119. [Google Scholar] [CrossRef]
- Slimi, R.; El Yacoubi, S.; Dumonteil, E.; Gourbiere, S. A cellular automata model for Chagas disease. Appl. Math. Model. 2009, 33, 1072. [Google Scholar] [CrossRef]
- Pascual, M.; Roy, M.; Laneri, K. Simple models for complex systems: Exploiting the relationship between local and global densities. Theor. Ecol. 2011, 4, 211. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.A.L.R.; Monteiro, L.H.A. Self-sustained oscillations in epidemic models with infective immigrants. Ecol. Complex. 2014, 17, 40. [Google Scholar] [CrossRef]
- Edelstein-Keshet, L. Mathematical Models in Biology; SIAM: New York, NY, USA, 2005. [Google Scholar]
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Lotka, A.J. Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 1920, 42, 1595. [Google Scholar] [CrossRef]
- Volterra, V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. Lincei 1926, 2, 31. [Google Scholar]
- Arneodo, A.; Coullet, P.; Peyraud, J.; Tresser, C. Strange attractors in Volterra equations for species in competition. J. Math. Biol. 1982, 14, 153. [Google Scholar] [CrossRef]
- Wang, Q.L.; Huang, W.T.; Wu, H.T. Bifurcation of limit cycles for 3D Lotka-Volterra competitive systems. Acta Appl. Math. 2011, 114, 207. [Google Scholar] [CrossRef]
- Ren, G.Q.; Xiang, T. Global solvability in a two-species chemotaxis system with signal production. Acta Appl. Math. 2022, 178, 12. [Google Scholar] [CrossRef]
- Almaraz, P.; Kalita, P.; Langa, J.A.; Soler-Toscano, F. Structural stability of invasion graphs for Lotka–Volterra systems. J. Math. Biol. 2024, 88, 64. [Google Scholar] [CrossRef]
- Primm, S.L. The complexity and stability of ecosystems. Nature 1984, 307, 321. [Google Scholar] [CrossRef]
- Song, Y.H.; Niu, L. Global dynamics of a periodically forced SI disease model of Lotka-Volterra type. Phys. D Nonlinear Phenom. 2024, 470, 134422. [Google Scholar] [CrossRef]
- Stein, R.R.; Bucci, V.; Toussaint, N.C.; Buffie, C.G.; Rätsch, G.; Pamer, E.G.; Sander, C.; Xavier, J.B. Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 2013, 9, e1003388. [Google Scholar] [CrossRef] [PubMed]
- Brunner, N.; Das, S.; Starkl, M. Lotka-Volterra analysis of river Ganga pollution in India. Ecol. Ind. 2023, 150, 110201. [Google Scholar] [CrossRef]
- Schuster, P.; Sigmund, K.; Wolff, R. Mass-action kinetics of self-replication in flow reactors. J. Math. Anal. Appl. 1980, 78, 88. [Google Scholar] [CrossRef]
- Bomze, I.M. Lotka-Volterra equation and replicator dynamics: A two-dimensional classification. Biol. Cybern. 1983, 48, 201. [Google Scholar] [CrossRef]
- Fort, H. Productivity vs. evenness in the U.S. financial market: A business ecosystem perspective. Entropy 2023, 25, 1029. [Google Scholar] [CrossRef]
- Chaudhary, H.; Khan, A.; Nigar, U.; Kaushik, S.; Sajid, M. An effective synchronization approach to stability analysis for chaotic generalized Lotka–Volterra biological models using active and parameter identification methods. Entropy 2022, 24, 529. [Google Scholar] [CrossRef]
- Karmeshu; Bhargava, S.C.; Jain, V.P. A rationale for law of technological substitution. Reg. Sci. Urban Econ. 1985, 15, 137. [Google Scholar] [CrossRef]
- Ziegler, A.M.; Brunner, N.; Kühleitner, M. The markets of green cars of three countries: Analysis using Lotka–Volterra and Bertalanffy–Pütter models. J. Open Innov. Technol. Mark. Complex. 2020, 6, 67. [Google Scholar] [CrossRef]
- Chen, J.Y.; Hagos, S.; Fast, J.; Feng, Z. Predicting the evolution of shallow cumulus clouds with a Lotka-Volterra like model. J. Adv. Model. Earth Syst. 2025, 17, e2023MS003739. [Google Scholar] [CrossRef]
- Hofbauer, J.; Sigmund, K. Evolutionary Games and Population Dynamics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- May, R.M. Stability and Complexity in Model Ecosystems; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- Xu, M.R.; Liu, S.; Lou, Y. Persistence and extinction in the anti-symmetric Lotka-Volterra systems. J. Differ. Equ. 2024, 387, 299. [Google Scholar] [CrossRef]
- Saeedian, M.; Pigani, E.; Maritan, A.; Suweis, S.; Azaele, S. Effect of delay on the emergent stability patterns in generalized Lotka-Volterra ecological dynamics. Philos. Trans. R. Soc. A 2022, 380, 20210245. [Google Scholar] [CrossRef]
- Singh, P.; Baruah, G. Higher order interactions and species coexistence. Theor. Ecol. 2021, 14, 71. [Google Scholar] [CrossRef]
- Tuladhar, R.; Santamaria, F.; Stamova, I. Fractional Lotka-Volterra-type cooperation models: Impulsive control on their stability behavior. Entropy 2020, 22, 970. [Google Scholar] [CrossRef]
- Spagnolo, B.; Valenti, D.; Fiasconaro, A. Noise in ecosystems: A short review. Math. Biosci. Eng. 2004, 1, 185. [Google Scholar] [CrossRef]
- Marasco, A.; Picucci, A.; Romano, A. Market share dynamics using Lotka–Volterra models. Technol. Forecast. Soc. Chang. 2016, 105, 49. [Google Scholar] [CrossRef]
- Monteiro, L.H.A.; Nonis, F.C.; Concilio, R. Biological pest control and crop–tree competition in agroforestry: A dynamical systems analysis. Comp. Appl. Math. 2024, 43, 103. [Google Scholar] [CrossRef]
- Holling, C.S. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol. Monogr. 1992, 62, 447. [Google Scholar] [CrossRef]
- Börger, L.; Dalziel, B.D.; Fryxell, J.M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 2008, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, O.; Leu, S.T.; Bull, C.M.; Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 2017, 20, 3. [Google Scholar] [CrossRef]
- Chudzinska, M.; Nabe-Nielsen, J.; Smout, S.; Aarts, G.; Brasseur, S.; Graham, I.; Thompson, P.; McConnell, B. AgentSeal: Agent-based model describing movement of marine central-place foragers. Ecol. Model. 2021, 440, 109397. [Google Scholar] [CrossRef]
- Ezoe, H.; Ikegawa, Y. Coexistence of mutualists and non-mutualists in a dual-lattice model. J. Theor. Biol. 2013, 332, 1. [Google Scholar] [CrossRef]
- Pacala, S.W.; Deutschman, D.H. Details that matter: The spatial distribution of individual trees maintains forest ecosystem function. Oikos 1995, 74, 357. [Google Scholar] [CrossRef]
- Ebert, D.; Hottinger, J.W.; Pajunen, V.I. Unsuitable habitat patches lead to severe underestimation of dynamics and gene flow in a zooplankton metapopulation. J. Anim. Ecol. 2013, 82, 759. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; May, R.M.; Lehman, C.L.; Nowak, M.A. Habitat destruction and the extinction debt. Nature 1994, 371, 65. [Google Scholar] [CrossRef]
- da Cunha, E.R.; Santos, C.A.G.; da Silva, R.M.; Bacani, V.M.; Pott, A. Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 2021, 101, 105141. [Google Scholar] [CrossRef]
- Wolfram, S. Cellular Automata and Complexity: Collected Papers; Westview Press: Boulder, CO, USA, 1994. [Google Scholar]
- Schiff, J.L. Cellular Automata: A Discrete View of the World; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Monteiro, L.H.A.; Chimara, H.D.B.; Chaui Berlinck, J.G. Big cities: Shelters for contagious diseases. Ecol. Model. 2006, 197, 258. [Google Scholar] [CrossRef]
- Chaudhuri, K. A bioeconomic model of harvesting a multispecies fishery. Ecol. Model. 1986, 32, 267. [Google Scholar] [CrossRef]
- Zeeman, M.L. Extinction in competitive Lotka-Volterra systems. Proc. Am. Math. Soc. 1995, 123, 87. [Google Scholar] [CrossRef]
- Chattopadhyay, J. Effect of toxic substances on a two-species competitive system. Ecol. Model. 1996, 84, 287. [Google Scholar] [CrossRef]
- Gause, G.F. The Struggle for Existence; Williams and Wilkins Company: Baltimore, MD, USA, 1934. [Google Scholar]
- Kar, T.K.; Chaudhuri, K.S. On non-selective harvesting of two competing fish species in the presence of toxicity. Ecol. Model. 2003, 161, 125. [Google Scholar] [CrossRef]
- O’Dwyer, J.P. Whence Lotka-Volterra? Theor. Ecol. 2018, 11, 441. [Google Scholar] [CrossRef]
- Blanchard, P.; Devaney, R.L.; Hall, G.R. Differential Equations; Brooks/Cole: Boston, MA, USA, 2012. [Google Scholar]
- Xue, C.; Goldenfeld, N. Stochastic predator-prey dynamics of transposons in the human genome. Phys. Rev. Lett. 2016, 117, 208101. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Levin, S.A. A spatial patch dynamic modeling approach to pattern and process in an annual grassland. Ecol. Monogr. 1994, 64, 447. [Google Scholar] [CrossRef]
- Fisher, R.; McDowell, N.; Purves, D.; Moorcroft, P.; Sitch, S.; Cox, P.; Huntingford, C.; Meir, P.; Woodward, F.I. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol. 2010, 187, 666. [Google Scholar] [CrossRef]
- Thonicke, K.; Billing, M.; von Bloh, W.; Sakschewski, B.; Niinemets, U.; Peñuelas, J.; Cornelissen, J.H.C.; Onoda, Y.; van Bodegom, P.; Schaepman, M.E.; et al. Simulating functional diversity of European natural forests along climatic gradients. J. Biogeogr. 2020, 47, 1069. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concilio, R.; Monteiro, L.H.A. On Considering Unoccupied Sites in Ecological Models. Entropy 2025, 27, 798. https://doi.org/10.3390/e27080798
Concilio R, Monteiro LHA. On Considering Unoccupied Sites in Ecological Models. Entropy. 2025; 27(8):798. https://doi.org/10.3390/e27080798
Chicago/Turabian StyleConcilio, Ricardo, and Luiz H. A. Monteiro. 2025. "On Considering Unoccupied Sites in Ecological Models" Entropy 27, no. 8: 798. https://doi.org/10.3390/e27080798
APA StyleConcilio, R., & Monteiro, L. H. A. (2025). On Considering Unoccupied Sites in Ecological Models. Entropy, 27(8), 798. https://doi.org/10.3390/e27080798