KCUNET: Multi-Focus Image Fusion via the Parallel Integration of KAN and Convolutional Layers
Abstract
1. Introduction
- This paper proposes a novel MFIF network based U-Net called KCUNet, which a parallel KAN layer alongside convolutional layers in the encoder, maintaining consistent spatial dimensions of feature maps while progressively increasing channel depth to capture multi-scale features effectively.
- This paper designs a spatial–channel guided attention network (S–CGANet), which boosts edge preservation by combining Laplace pyramid-based high-frequency feature extraction with channel guided attention (CGA), refining boundary localization and reducing defocus effects in image fusion.
- This paper designs a hybrid loss function that comprehensively considers the performance of the model in several aspects including edge alignment, mask prediction and fused images.
- This paper demonstrates the performance of KCUNet through extensive comparative experiments and ablation studies. Compared with 15 state-of-the-art (SOTA) methods, KCUNet shows superior performance in focal region detection, visual perception analysis and quantitative scoring.
2. Related Work
2.1. Traditional MFIF Methods
2.2. Deep Learning-Based Methods
2.3. Defocus Spread Effect (DSE)
2.4. Kolmogorov–Arnold Network (KAN)
3. Proposed Method
3.1. Problem Formulation
3.2. Overview
3.2.1. Encoding Component
3.2.2. Attention Module
3.3. Loss Function
3.3.1. Edge Alignment Loss
3.3.2. Mask Loss
3.3.3. Quality Loss
4. Experiment
4.1. Execution Details
4.2. Test Datasets
4.3. Assessment Methods
4.4. Comparison with SOTA Methods
4.4.1. Subjective Analyses
4.4.2. Objective Analyses
4.5. Ablation Experiments
4.5.1. Effect of KAN
4.5.2. Impact of Encoder and Attention Modules
4.5.3. Effects of Different Loss Functions
4.6. Hyperparameter Tuning Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X. Deep learning-based multi-focus image fusion: A survey and a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4819–4838. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kang, X.; Hu, J.; Yang, B. Image matting for fusion of multi-focus images in dynamic scenes. Inf. Fusion 2013, 14, 147–162. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wang, Z. Multi-focus image fusion with dense SIFT. Inf. Fusion 2015, 23, 139–155. [Google Scholar] [CrossRef]
- Li, S.; Yang, B. Multifocus image fusion using region segmentation and spatial frequency. Image Vis. Comput. 2008, 26, 971–979. [Google Scholar] [CrossRef]
- Duan, J.; Chen, L.; Chen, C.P. Multifocus image fusion with enhanced linear spectral clustering and fast depth map estimation. Neurocomputing 2018, 318, 43–54. [Google Scholar] [CrossRef]
- Li, S.; Kwok, J.T.; Wang, Y. Combination of images with diverse focuses using the spatial frequency. Image Vis. Comput. 2001, 2, 169–176. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, Y.; Zhou, F.; Xue, B. Quadtree-based multi-focus image fusion using a weighted focus-measure. Image Vis. Comput. 2015, 22, 105–118. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Peng, H.; Wang, Z. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017, 36, 191–207. [Google Scholar] [CrossRef]
- Ma, B.; Yin, X.; Wu, D.; Shen, H.; Ban, X.; Wang, Y. End-to-end learning for simultaneously generating decision map and multi-focus image fusion result. Neurocomputing 2022, 470, 204–216. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Lu, G.; Zhang, B.; Xu, Y.; Wu, F.; Zhang, D. DRPL: Deep regression pair learning for multi-focus image fusion. IEEE Trans. Image Process. 2020, 29, 4816–4831. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhu, Y.; Yin, X.; Ban, X.; Huang, H.; Mukeshimana, M. Sesf-fuse: An unsupervised deep model for multi-focus image fusion. Neural Comput. Appl. 2021, 33, 5793–5804. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; proceedings, part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, 17–21 October 2016; Proceedings, Part II 19. Springer: Berlin/Heidelberg, Germany, 2016; pp. 424–432. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; proceedings 4. Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–11. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 205–218. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. Merging images through pattern decomposition. In Proceedings of the Applications of Digital Image Processing VIII, San Diego, CA, USA, 20–22 August 1985; Volume 575, pp. 173–181. [Google Scholar] [CrossRef]
- Toet, A. Image fusion by a ratio of low-pass pyramid. Pattern Recognit. Lett. 1989, 9, 245–253. [Google Scholar] [CrossRef]
- Lewis, J.J.; O’ Callaghan, R.J.; Nikolov, S.G.; Bull, D.R.; Canagarajah, N. Pixel-and region-based image fusion with complex wavelets. Inf. Fusion 2007, 8, 119–130. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, B.l. Multifocus image fusion using the nonsubsampled contourlet transform. Signal Process. 2009, 89, 1334–1346. [Google Scholar] [CrossRef]
- Yang, B.; Li, S. Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 2009, 59, 884–892. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, X.; Wang, T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure. Inf. Fusion 2017, 35, 81–101. [Google Scholar] [CrossRef]
- Panigrahy, C.; Seal, A.; Mahato, N.K. Fractal dimension based parameter adaptive dual channel PCNN for multi-focus image fusion. Opt. Lasers Eng. 2020, 133, 106141. [Google Scholar] [CrossRef]
- Kurban, R. Gaussian of differences: A simple and efficient general image fusion method. Entropy 2023, 25, 1215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Sun, P.; Yan, H.; Zhao, X.; Zhang, L. IFCNN: A general image fusion framework based on convolutional neural network. Inf. Fusion 2020, 54, 99–118. [Google Scholar] [CrossRef]
- Jung, H.; Kim, Y.; Jang, H.; Ha, N.; Sohn, K. Unsupervised deep image fusion with structure tensor representations. IEEE Trans. Image Process. 2020, 29, 3845–3858. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Gilani, S.Z.; Qin, H.; Mian, A. Structural similarity loss for learning to fuse multi-focus images. Sensors 2020, 20, 6647. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, Z.; Hu, S.; Kan, S. Multi-focus image fusion based on multi-scale generative adversarial network. Entropy 2022, 24, 582. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Xu, T.; Wu, X.J. MUFusion: A general unsupervised image fusion network based on memory unit. Inf. Fusion 2023, 92, 80–92. [Google Scholar] [CrossRef]
- Ma, H.; Liao, Q.; Zhang, J.; Liu, S.; Xue, J.H. An α-matte boundary defocus model-based cascaded network for multi-focus image fusion. IEEE Trans. Image Process. 2020, 29, 8668–8679. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ji, L.; Wang, Z.; Li, P.; Sun, K.; Zhang, C.; Zhang, J. Towards reducing severe defocus spread effects for multi-focus image fusion via an optimization based strategy. IEEE Trans. Comput. Imaging 2020, 6, 1561–1570. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Liu, J.; Zhao, Z.; Zhang, C.; Zhang, J. MFIF-GAN: A new generative adversarial network for multi-focus image fusion. Signal Process. Image Commun. 2021, 96, 116295. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. KAN: Kolmogorov-Arnold Networks. In Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025), Singapore, 24 April 2025. [Google Scholar]
- Chen, Z.; He, Z.; Lu, Z.M. DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Trans. Image Process. 2024, 33, 1002–1015. [Google Scholar] [CrossRef]
- Everingham, M.; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Nejati, M.; Samavi, S.; Shirani, S. Multi-focus image fusion using dictionary-based sparse representation. Inf. Fusion 2015, 25, 72–84. [Google Scholar] [CrossRef]
- Zhang, H.; Le, Z.; Shao, Z.; Xu, H.; Ma, J. MFF-GAN: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion. Inf. Fusion 2021, 66, 40–53. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; proceedings, part v 13. Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar] [CrossRef]
- Cai, J.; Gu, S.; Zhang, L. Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 2018, 27, 2049–2062. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Blasch, E.; Xue, Z.; Zhao, J.; Laganiere, R.; Wu, W. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.; Zhang, D.; Yan, P. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 313–315. [Google Scholar] [CrossRef]
- Stathaki, T. Image Fusion: Algorithms and Applications; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Chen, Y.; Blum, R.S. A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 2009, 27, 1421–1432. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.Q.; Wang, X.R.; Liu, X. A novel similarity based quality metric for image fusion. Inf. Fusion 2008, 9, 156–160. [Google Scholar] [CrossRef]
- Wang, P.w.; Liu, B. A novel image fusion metric based on multi-scale analysis. In Proceedings of the 2008 9th International Conference on Signal Processing, Beijing, China, 26–29 October 2008; pp. 965–968. [Google Scholar] [CrossRef]
- Xydeas, C.S.; Petrovic, V. Objective image fusion performance measure. Electron. Lett. 2000, 36, 308–309. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, D.; Lu, H. Multi-focus image fusion with a natural enhancement via a joint multi-level deeply supervised convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 1102–1115. [Google Scholar] [CrossRef]
- Amin-Naji, M.a.; Aghagolzadeh, A. Multi-focus image fusion in DCT domain using variance and energy of Laplacian and correlation coefficient for visual sensor networks. J. AI Data Min. 2018, 6, 233–250. [Google Scholar] [CrossRef]
- Amin-Naji, M.; Aghagolzadeh, A.; Ezoji, M. Ensemble of CNN for multi-focus image fusion. Inf. Fusion 2019, 51, 201–214. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Jiang, J.; Guo, X.; Ling, H. U2Fusion: A unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Tang, L.; Fan, F.; Huang, J.; Mei, X.; Ma, Y. SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer. IEEE/CAA J. Autom. Sin. 2022, 9, 1200–1217. [Google Scholar] [CrossRef]
- Karacan, L. Multi-image transformer for multi-focus image fusion. Signal Process. Image Commun. 2023, 119, 117058. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, J.; Liu, X.; Ma, J. ZMFF: Zero-shot multi-focus image fusion. Inf. Fusion 2023, 92, 127–138. [Google Scholar] [CrossRef]
- Li, M.; Pei, R.; Zheng, T.; Zhang, Y.; Fu, W. FusionDiff: Multi-focus image fusion using denoising diffusion probabilistic models. Expert Syst. Appl. 2024, 238, 121664. [Google Scholar] [CrossRef]
Encoder | S–CGANet | Decoder | |||||||
---|---|---|---|---|---|---|---|---|---|
Eecoder 1 | 16 | KAN layer | 3 | S–CGANet 1 | 16 | Conv layer 1 | 16 | Decoder 1-1 | 1 |
3 × 3 Conv + 3 × 3 Conv | 3 | ||||||||
Conv layer 2 | 1 | Decoder 1-2 | 16 | ||||||
3 × 3 Conv + 1 × 1 Conv | 16 | ||||||||
Eecoder 2 | 32 | KAN Layer | 16 | S–CGANet 2 | 32 | Conv layer 1 | 32 | Decoder 2-1 | 1 |
3 × 3 Conv + 3 × 3 Conv | 16 | ||||||||
Conv layer 2 | 1 | Decoder 2-2 | 32 | ||||||
3 × 3 Conv + 1 × 1 Conv | 32 | ||||||||
Eecoder 3 | 48 | KAN Layer | 32 | S–CGANet 3 | 48 | Conv layer 1 | 48 | Decoder 3-1 | 1 |
3 × 3 Conv + 3 × 3 Conv | 32 | ||||||||
Conv layer 2 | 1 | Decoder 3-2 | 48 | ||||||
3 × 3 Conv + 1 × 1 Conv | 48 | ||||||||
Eecoder 4 | 64 | KAN Layer | 48 | / | Decoder 4-1 | 1 | |||
3 × 3 Conv + 3 × 3 Conv | 48 | ||||||||
Decoder 4-2 | 64 | ||||||||
3 × 3 Conv + 1 × 1 Conv | 64 |
(a) Lytro | |||||||||
---|---|---|---|---|---|---|---|---|---|
MI | NCIE | GLD | SSIM | MSD | Time (s) | ||||
BFMF [22] | 1.120786 | 0.841565 | 0.748662 | 0.829980 | 0.977915 | 0.797808 | 0.397188 | 2.056438 | 0.82 |
DCT-EOL [48] | 1.135365 | 0.841971 | 0.750989 | 0.825581 | 0.975609 | 0.795957 | 0.397804 | 2.208693 | 0.34 |
CNN [8] | 1.109687 | 0.840168 | 0.751597 | 0.832701 | 0.978043 | 0.799881 | 0.396286 | 2.041220 | 89.34 |
DRPL [10] | 1.091545 | 0.838783 | 0.752593 | 0.839841 | 0.981742 | 0.794202 | 0.396623 | 1.702978 | 0.29 |
ECNN [49] | 1.127325 | 0.841359 | 0.747771 | 0.818095 | 0.975674 | 0.795808 | 0.396967 | 2.200383 | 72.85 |
FusionDiff [54] | 1.133919 | 0.841958 | 0.751038 | 0.825959 | 0.975511 | 0.795062 | 0.397590 | 2.212881 | 5.63 |
IFCNN [25] | 0.926848 | 0.829266 | 0.725188 | 0.802673 | 0.951572 | 0.723420 | 0.382435 | 1.185922 | 0.08 |
MFF-GAN [37] | 0.804653 | 0.823709 | 0.659247 | 0.712464 | 0.882123 | 0.645681 | 0.378113 | 0.641194 | 1.06 |
MFIF-GAN [32] | 1.131316 | 0.841718 | 0.752563 | 0.830668 | 0.979351 | 0.800559 | 0.398151 | 2.179960 | 1.26 |
MiT [52] | 1.149638 | 0.842643 | 0.750932 | 0.831739 | 0.968942 | 0.785913 | 0.398152 | 2.36881 | 2.89 |
Swin Fusion [51] | 1.153513 | 0.841352 | 0.753391 | 0.840163 | 0.981411 | 0.793856 | 0.399057 | 2.17592 | 1.62 |
SESF [11] | 1.102258 | 0.839721 | 0.746465 | 0.825042 | 0.975765 | 0.796275 | 0.394775 | 2.094775 | 0.31 |
U2Fusion [50] | 0.772468 | 0.822085 | 0.609294 | 0.665709 | 0.791230 | 0.568214 | 0.399414 | 0.498487 | 2.57 |
MMF-Net [30] | 0.971946 | 0.832144 | 0.722871 | 0.81261 | 0.951421 | 0.750805 | 0.383743 | 1.39292 | 0.51 |
ZMFF [50] | 0.883846 | 0.827076 | 0.703035 | 0.785289 | 0.931368 | 0.741161 | 0.391849 | 0.599906 | 359.26 |
Proposed | 1.176907 | 0.844614 | 0.756260 | 0.832972 | 0.983603 | 0.802801 | 0.400774 | 2.508082 | 7.69 |
(b) MFFW | |||||||||
MI | NCIE | GLD | SSIM | MSD | Time (s) | ||||
BFMF [22] | 0.781535 | 0.820600 | 0.618944 | 0.557555 | 0.932778 | 0.680319 | 0.366949 | 0.471419 | 1.37 |
DCT-EOL [48] | 0.736733 | 0.818880 | 0.623827 | 0.539449 | 0.763540 | 0.665272 | 0.357793 | 0.496458 | 0.56 |
CNN [8] | 0.767708 | 0.819903 | 0.627882 | 0.563330 | 0.782654 | 0.675026 | 0.364013 | 0.476062 | 119.71 |
DRPL [10] | 0.826484 | 0.822331 | 0.680520 | 0.646220 | 0.840019 | 0.695705 | 0.374099 | 0.796502 | 0.74428 |
ECNN [49] | 0.744842 | 0.819179 | 0.622812 | 0.547708 | 0.759878 | 0.669305 | 0.359607 | 0.495281 | 102.47 |
FusionDiff [54] | 1.074970 | 0.819279 | 0.722778 | 0.672428 | 0.872219 | 0.704530 | 0.359923 | 1.944150 | 6.87 |
IFCNN [25] | 0.750173 | 0.819172 | 0.606258 | 0.526317 | 0.758045 | 0.626119 | 0.361500 | 0.393533 | 0.13 |
MFF-GAN [37] | 0.706532 | 0.817821 | 0.571507 | 0.480930 | 0.712813 | 0.584129 | 0.367098 | 0.341773 | 1.71 |
MFIF-GAN [32] | 0.771574 | 0.820045 | 0.630538 | 0.571361 | 0.790328 | 0.688156 | 0.364516 | 0.492021 | 1.88 |
MiT [52] | 0.945537 | 0.821366 | 0.718129 | 0.728854 | 0.901684 | 0.702352 | 0.364124 | 2.28531 | 4.37 |
SwinFusion [51] | 1.016355 | 0.831712 | 0.712634 | 0.695388 | 0.924638 | 0.703384 | 0.365321 | 2.15374 | 1.83 |
SESF [11] | 0.738324 | 0.818898 | 0.624714 | 0.551459 | 0.827208 | 0.673302 | 0.354221 | 0.474540 | 0.74 |
U2Fusion [50] | 0.697070 | 0.817080 | 0.536063 | 0.469957 | 0.667186 | 0.549475 | 0.389798 | 0.311336 | 3.94 |
MMF-Net [30] | 0.815816 | 0.821902 | 0.683651 | 0.645986 | 0.838008 | 0.690607 | 0.372084 | 0.763692 | 1.15 |
ZMFF [50] | 0.763981 | 0.819897 | 0.654051 | 0.623221 | 0.845644 | 0.6751245 | 0.373213 | 0.478555 | 373.33 |
Proposed | 1.148829 | 0.839920 | 0.732071 | 0.697461 | 0.936793 | 0.714825 | 0.405085 | 2.498152 | 8.87 |
(c) MFI-WHU | |||||||||
MI | NCIE | GLD | SSIM | MSD | Time (s) | ||||
BFMF [22] | 1.162822 | 0.844579 | 0.726402 | 0.79841 | 0.986869 | 0.831481 | 0.387028 | 2.267257 | 1.03 |
DCT-EOL [48] | 1.17627 | 0.844935 | 0.722151 | 0.761314 | 0.979879 | 0.811306 | 0.390087 | 2.384231 | 0.39 |
CNN [8] | 1.15616 | 0.844016 | 0.729326 | 0.799211 | 0.98745 | 0.831087 | 0.386453 | 2.256109 | 92.52 |
DRPL [10] | 1.089268 | 0.838904 | 0.725469 | 0.793622 | 0.985109 | 0.823178 | 0.382771 | 1.58352 | 0.56 |
ECNN [49] | 1.177014 | 0.845299 | 0.729397 | 0.794453 | 0.987218 | 0.830274 | 0.388292 | 2.380926 | 83.34 |
FusionDiff [54] | 1.161053 | 0.844275 | 0.729286 | 0.798314 | 0.987122 | 0.831801 | 0.386809 | 2.304451 | 7.25 |
IFCNN [25] | 0.897787 | 0.8278 | 0.694425 | 0.781341 | 0.957726 | 0.740476 | 0.363874 | 1.002306 | 0.22 |
MFF-GAN [37] | 0.757389 | 0.82176 | 0.638063 | 0.716602 | 0.885304 | 0.636203 | 0.351768 | 0.526223 | 1.41 |
MFIF-GAN [32] | 1.167011 | 0.845152 | 0.724862 | 0.782565 | 0.982538 | 0.82458 | 0.388139 | 2.318145 | 1.09 |
MiT [52] | 1.162259 | 0.837136 | 0.726149 | 0.796272 | 0.981222 | 0.811981 | 0.388731 | 2.38185 | 3.53 |
SwinFusion [51] | 1.089268 | 0.838904 | 0.725469 | 0.793622 | 0.985102 | 0.823178 | 0.389668 | 1.58352 | 1.73 |
SESF [11] | 1.14944 | 0.843643 | 0.72259 | 0.795414 | 0.985044 | 0.823807 | 0.387253 | 2.269356 | 0.67 |
U2Fusion [50] | 0.679615 | 0.818677 | 0.543644 | 0.615793 | 0.758541 | 0.513538 | 0.366102 | 0.340131 | 3.17 |
MMF-Net [30] | 1.06377 | 0.837174 | 0.723202 | 0.796456 | 0.983624 | 0.818679 | 0.38084 | 1.373467 | 0.59 |
ZMFF [50] | 0.775562 | 0.822346 | 0.633181 | 0.693681 | 0.677882 | 0.713661 | 0.361973 | 0.370791 | 389.21 |
Proposed | 1.205382 | 0.847725 | 0.730077 | 0.794514 | 0.987327 | 0.830858 | 0.392306 | 2.477546 | 7.97 |
MI | NCIE | GLD | SSIM | MSD | |||||
---|---|---|---|---|---|---|---|---|---|
Lytro | Proposed | 1.176907 | 0.844614 | 0.756260 | 0.832972 | 0.983603 | 0.802801 | 0.400774 | 2.508082 |
No KAN | 1.171163 | 0.844148 | 0.744605 | 0.816912 | 0.978640 | 0.793031 | 0.398791 | 2.411444 | |
Difference | 0.005744 | 0.000466 | 0.011655 | 0.016060 | 0.004962 | 0.009771 | 0.001983 | 0.096637 | |
MFFW | Proposed | 1.148829 | 0.839920 | 0.732071 | 0.697461 | 0.936793 | 0.714825 | 0.405085 | 2.498152 |
No KAN | 1.146606 | 0.839539 | 0.725526 | 0.684955 | 0.934455 | 0.705403 | 0.403914 | 2.453557 | |
Difference | 0.002223 | 0.000381 | 0.006545 | 0.012506 | 0.002339 | 0.009422 | 0.001171 | 0.044595 | |
MFI-WHU | Proposed | 1.205382 | 0.847725 | 0.730077 | 0.794514 | 0.987327 | 0.830858 | 0.392306 | 2.477546 |
No KAN | 1.200248 | 0.846946 | 0.725282 | 0.789917 | 0.984802 | 0.827545 | 0.389669 | 2.437547 | |
Difference | 0.005134 | 0.000779 | 0.004795 | 0.004597 | 0.002525 | 0.003313 | 0.002637 | 0.040000 |
Experiment | Parameter | Encoder1 | Encoder2 | Encoder3 | Encoder4 | Decoder4 | Decoder3 | Decoder2 | Decoder1 |
---|---|---|---|---|---|---|---|---|---|
Proposed | Channels | 3 | 16 | 32 | 48 | 64 | 48 | 32 | 16 |
Size | H,W | H,W | H,W | H,W | H,W | H,W | H,W | H,W | |
Experiment1 | Channels | 3 | 16 | 32 | 48 | 64 | 48 | 32 | 16 |
Size | H,W | H/2,W/2, | H/4,W/4 | H/8,W/8 | H/8,W/8 | H/4,W/4 | H/2,W/2 | H,W | |
Experiment2 | Channels | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Size | H,W | H,W | H,W | H,W | H,W | H,W | H,W | H,W | |
Experiment3 | Channels | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Size | H,W | H/2,W/2, | H/4,W/4 | H/8,W/8 | H/8,W/8 | H/4,W/4 | H/2,W/2 | H,W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Wang, R.; Ning, X.; Wang, R.; Teng, S.; Liu, X.; Zhang, Z.; Lu, W.; Hu, S.; Wang, J. KCUNET: Multi-Focus Image Fusion via the Parallel Integration of KAN and Convolutional Layers. Entropy 2025, 27, 785. https://doi.org/10.3390/e27080785
Fang J, Wang R, Ning X, Wang R, Teng S, Liu X, Zhang Z, Lu W, Hu S, Wang J. KCUNET: Multi-Focus Image Fusion via the Parallel Integration of KAN and Convolutional Layers. Entropy. 2025; 27(8):785. https://doi.org/10.3390/e27080785
Chicago/Turabian StyleFang, Jing, Ruxian Wang, Xinglin Ning, Ruiqing Wang, Shuyun Teng, Xuran Liu, Zhipeng Zhang, Wenfeng Lu, Shaohai Hu, and Jingjing Wang. 2025. "KCUNET: Multi-Focus Image Fusion via the Parallel Integration of KAN and Convolutional Layers" Entropy 27, no. 8: 785. https://doi.org/10.3390/e27080785
APA StyleFang, J., Wang, R., Ning, X., Wang, R., Teng, S., Liu, X., Zhang, Z., Lu, W., Hu, S., & Wang, J. (2025). KCUNET: Multi-Focus Image Fusion via the Parallel Integration of KAN and Convolutional Layers. Entropy, 27(8), 785. https://doi.org/10.3390/e27080785