State Space Correspondence and Cross-Entropy Methods in the Assessment of Bidirectional Cardiorespiratory Coupling in Heart Failure
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Experimental Protocol
2.2. Series Extraction
2.3. Cross-Entropy
2.4. State Space Correspondence
2.5. Univariate Complexity Indexes
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Clinical Characteristics
4.2. Complexity of Heart and Respiratory Rhythms
4.3. Cardiorespiratory Coupling
4.4. Limitations and Future Developments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HP | heart period |
RSA | respiratory sinus arrhythmia |
CRC | cardiorespiratory coupling |
CrossEn | cross-entropy |
SSC | state space correspondence |
KNN | k-nearest neighbor |
HF | heart failure |
SR | sinus rhythm |
VA | ventricular arrhythmia |
LVEF | left ventricular ejection fraction |
CRT | cardiac resynchronization therapy |
ECG | electrocardiogram |
RESP | respiration |
CP | cross-predictability |
CPF | cross-predictability function |
CPI | cross-predictability index |
IS | information storage |
PF | predictability function |
PI | predictability index |
References
- Hirsch, J.A.; Bishop, B. Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am. J. Physiol. Heart Circ. Physiol. 1981, 241, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Kantelhardt, J.W.; Bartsch, R.P.; Riedl, M.; Kraemer, J.F.; Wessel, N.; Garcia, C.; Glos, M.; Fietze, I.; Schöbel, C. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography. Front. Physiol. 2016, 7, 460. [Google Scholar] [CrossRef] [PubMed]
- Cairo, B.; Bari, V.; Gelpi, F.; De Maria, B.; Barbic, F.; Furlan, R.; Porta, A. Characterization of cardiorespiratory coupling via a variability-based multi-method approach: Application to postural orthostatic tachycardia syndrome. Chaos 2024, 34, 122102. [Google Scholar] [CrossRef] [PubMed]
- Galletly, D.C.; Larsen, P.D. Cardioventilatory coupling during anaesthesia. Br. J. Anaesth. 1997, 79, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, Y.C.; Larsen, P.D.; Galletly, D.C. Cardioventilatory coupling in resting human subjects. Exp. Physiol. 2003, 88, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Radovanović, N.N.; Pavlović, S.U.; Milašinović, G.; Kirćanski, B.; Platiša, M.M. Bidirectional Cardio-Respiratory Interactions in Heart Failure. Front. Physiol. 2018, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Platiša, M.M.; Radovanović, N.N.; Pernice, R.; Barà, C.; Pavlović, S.U.; Faes, L. Information-Theoretic Analysis of Cardio-Respiratory Interactions in Heart Failure Patients: Effects of Arrhythmias and Cardiac Resynchronization Therapy. Entropy 2023, 25, 1072. [Google Scholar] [CrossRef] [PubMed]
- Abreu, R.M.d.; Cairo, B.; Rehder-Santos, P.; da Silva, C.D.; Signini, É.D.F.; Milan-Mattos, J.C.; Sakaguchi, C.A.; Catai, A.M.; Porta, A. Cardiorespiratory coupling is associated with exercise capacity in athletes: A cross-sectional study. Respir. Physiol. Neurobiol. 2024, 320, 104198. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H. Age-dependent cardiorespiratory directional coupling in wake-resting state. Physiol. Meas. 2022, 43, 125003. [Google Scholar] [CrossRef] [PubMed]
- Mrowka, R.; Cimponeriu, L.; Patzak, A.; Rosenblum, M.G. Directionality of coupling of physiological subsystems: Age-related changes of cardiorespiratory interaction during different sleep stages in babies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R1395–R1401. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, M.G.; Cimponeriu, L.; Bezerianos, A.; Patzak, A.; Mrowka, R. Identification of coupling direction: Application to cardiorespiratory interaction. Phys. Rev. E 2002, 65, 041909. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Castiglioni, P.; Di Rienzo, M.; Bassani, T.; Bari, V.; Faes, L.; Nollo, G.; Cividjan, A.; Quintin, L. Cardiovascular control and time domain granger causality: Insights from selective autonomic blockade. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120161. [Google Scholar] [CrossRef] [PubMed]
- Bahraminasab, A.; Kenwright, D.; Stefanovska, A.; Ghasemi, F.; McClintock, P.V. Phase coupling in the cardiorespiratory interaction. IET Syst. Biol. 2008, 2, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Faes, L.; Porta, A. Conditional entropy-based evaluation of information dynamics in physiological systems. In Directed Information Measures in Neuroscience: Understanding Complex Systems; Wibral, M., Vicente, R., Lizier, J.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 61–86. [Google Scholar] [CrossRef]
- Schiff, S.J.; So, P.; Chang, T.; Burke, R.E.; Sauer, T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E 1996, 54, 6708–6724. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; de Abreu, R.M.; Bari, V.; Gelpi, F.; De Maria, B.; Catai, A.M.; Cairo, B. On the validity of the state space correspondence strategy based on k-nearest neighbor cross-predictability in assessing directionality in stochastic systems: Application to cardiorespiratory coupling estimation. Chaos 2024, 34, 053115. [Google Scholar] [CrossRef] [PubMed]
- Radovanović, N.N.; Pavlović, S.U.; Milašinović, G.; Platiša, M.M. Effects of Cardiac Resynchronization Therapy on Cardio-Respiratory Coupling. Entropy 2021, 23, 1126. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.; Ewbank, H.; Po, S.S.; Dasari, T.W. Cardio-respiratory coupling and myocardial recovery in heart failure with reduced ejection fraction. Respir. Physiol. Neurobiol. 2024, 328, 104313. [Google Scholar] [CrossRef]
- Porta, A.; Maestri, R.; Bari, V.; De Maria, B.; Cairo, B.; Vaini, E.; La Rovere, M.T.; Pinna, G.D. Paced breathing increases the redundancy of cardiorespiratory control in healthy individuals and chronic heart failure patients. Entropy 2018, 20, 949. [Google Scholar] [CrossRef] [PubMed]
- Cygankiewicz, I. Heart rate turbulence. Prog. Cardiovasc. Dis. 2013, 56, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yu, J.; Wu, Y.; Li, X.; Xie, X.; Tao, A.; Yang, B. The significance of heart rate variability in patients with frequent premature ventricular complex originating from the ventricular outflow tract. Clin. Cardiol. 2024, 47, e24174. [Google Scholar] [CrossRef] [PubMed]
- Magagnin, V.; Bassani, T.; Bari, V.; Turiel, M.; Maestri, R.; Pinna, G.D.; Porta, A. Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol. Meas. 2011, 32, 1775–1786. [Google Scholar] [CrossRef] [PubMed]
- Faes, L.; Porta, A.; Nollo, G. Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics. Entropy 2015, 17, 277–303. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [PubMed]
- Faes, L.; Erla, S.; Nollo, G. Measuring Connectivity in Linear Multivariate Processes: Definitions, Interpretation, and Practical Analysis. Comput. Math. Methods Med. 2012, 2012, 140513. [Google Scholar] [CrossRef] [PubMed]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Lecture Notes in Mathematics; Rand, D., Young, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; Volume 898, pp. 366–381. [Google Scholar] [CrossRef]
- Schiecke, K.; Pester, B.; Piper, D.; Benninger, F.; Feucht, M.; Leistritz, L.; Witte, H. Nonlinear Directed Interactions Between HRV and EEG Activity in Children With TLE. IEEE Trans. Biomed. Eng. 2016, 63, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
- Schiecke, K.; Schumann, A.; Benninger, F.; Feucht, M.; Baer, K.J.; Schlattmann, P. Brain-heart interactions considering complex physiological data: Processing schemes for time-variant, frequency-dependent, topographical and statistical examination of directed interactions by convergent cross mapping. Physiol. Meas. 2019, 40, 114001. [Google Scholar] [CrossRef] [PubMed]
- Le Van Quyen, M.; Adam, C.; Baulac, M.; Martinerie, J.; Varela, F.J. Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures. Brain Res. 1998, 792, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Faes, L.; Porta, A.; Nollo, G. Mutual nonlinear prediction as a tool to evaluate coupling strength and directionality in bivariate time series: Comparison among different strategies based on k nearest neighbors. Phys. Rev. E 2008, 78, 026201. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, G.; May, R.M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 1990, 344, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Bari, V.; Gelpi, F.; Cairo, B.; De Maria, B.; Tonon, D.; Rossato, G.; Faes, L. On the Different Abilities of Cross-Sample Entropy and K-Nearest-Neighbor Cross-Unpredictability in Assessing Dynamic Cardiorespiratory and Cerebrovascular Interactions. Entropy 2023, 25, 599. [Google Scholar] [CrossRef] [PubMed]
- Pinto, H.; Lazic, I.; Antonacci, Y.; Pernice, R.; Gu, D.; Barà, C.; Faes, L.; Rocha, A.P. Testing dynamic correlations and nonlinearity in bivariate time series through information measures and surrogate data analysis. Front. Netw. Physiol. 2024, 4, 1385421. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Faes, L.; Bari, V.; Marchi, A.; Bassani, T.; Nollo, G.; Perseguini, N.M.; Milan, J.; Minatel, V.; Borghi-Silva, A.; et al. Effect of Age on Complexity and Causality of the Cardiovascular Control: Comparison between Model-Based and Model-Free Approaches. PLoS ONE 2014, 9, e89463. [Google Scholar] [CrossRef] [PubMed]
- Polovina, M.; Tschöpe, C.; Rosano, G.; Metra, M.; Crea, F.; Mullens, W.; Bauersachs, J.; Sliwa, K.; de Boer, R.A.; Farmakis, D.; et al. Incidence, risk assessment and prevention of sudden cardiac death in cardiomyopathies. Eur. J. Heart Fail. 2023, 25, 2144–2163. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Burger, A.J. Effect of beta-blockade on heart rate variability in decompensated heart failure. Int. J. Cardiol. 2001, 79, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Kontopoulos, A.G.; Athyros, V.G.; Papageorgiou, A.A.; Skeberis, V.M.; Basayiannis, E.C.; Boudoulas, H. Effect of angiotensin-converting enzyme inhibitors on the power spectrum of heart rate variability in post-myocardial infarction patients. Coron. Artery Dis. 1997, 8, 517–524. [Google Scholar] [PubMed]
- Platiša, M.M.; Radovanović, N.N.; Kalauzi, A.; Milašinović, G.; Pavlović, S.U. Multiscale Entropy Analysis: Application to Cardio-Respiratory Coupling. Entropy 2020, 22, 1042. [Google Scholar] [CrossRef] [PubMed]
- Schizas, I.; Sullivan, S.; Kerick, S.; Mahmoodi, K.; Cortney Bradford, J.; Boothe, D.L.; Franaszczuk, P.J.; Grigolini, P.; West, B.J. Complexity synchronization analysis of neurophysiological data: Theory and methods. Front. Netw. Physiol. 2025, 5, 1570530. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Welch, J.F. Control of Breathing. Semin. Respir. Crit. Care Med. 2023, 44, 627–649. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.S.; Johnson, S.M. Neuroplasticity in respiratory motor control. J. Appl. Physiol. 2003, 94, 358–374. [Google Scholar] [CrossRef] [PubMed]
- Feldman, J.L.; Mitchell, G.S.; Nattie, E.E. Breathing: Rhythmicity, plasticity, chemosensitivity. Annu. Rev. Neurosci. 2003, 26, 239–266. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, D.M.; Smith, C.A.; Johnson, B.D.; Eicker, S.W.; Henderson, K.S.; Dempsey, J.A. Vagal modulation of respiratory muscle activity in awake dogs during exercise and hypercapnia. J. Appl. Physiol. 1992, 72, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Banasiak, W. Chemosensitivity in chronic heart failure. Heart Fail. Monit. 2001, 1, 126–131. [Google Scholar] [PubMed]
- Ding, Y.; Li, Y.L.; Schultz, H.D. Role of blood flow in carotid body chemoreflex function in heart failure. J. Physiol. 2011, 589, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Marcus, N.J.; Del Rio, R.; Ding, Y.; Schultz, H.D. KLF2 mediates enhanced chemoreflex sensitivity, disordered breathing and autonomic dysregulation in heart failure. J. Physiol. 2018, 596, 3171–3185. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, A.; Mancia, G.; Balestri, G.; Bonfanti, D.; Castiglioni, P. Respiratory patterns and baroreflex function in heart failure. Sci. Rep. 2023, 13, 2220. [Google Scholar] [CrossRef] [PubMed]
- Elstad, M.; O’Callaghan, E.L.; Smith, A.J.; Ben-Tal, A.; Ramchandra, R. Cardiorespiratory interactions in humans and animals: Rhythms for life. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H6–H17. [Google Scholar] [CrossRef] [PubMed]
- Friedman, L.; Dick, T.E.; Jacono, F.J.; Loparo, K.A.; Yeganeh, A.; Fishman, M.; Wilson, C.G.; Strohl, K.P. Cardio-ventilatory coupling in young healthy resting subjects. J. Appl. Physiol. 2012, 112, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Murad, K.; Brubaker, P.H.; Fitzgerald, D.M.; Morgan, T.M.; Goff, D.C., Jr.; Soliman, E.Z.; Eggebeen, J.D.; Kitzman, D.W. Exercise training improves heart rate variability in older patients with heart failure: A randomized, controlled, single-blinded trial. Congest. Heart Fail. 2012, 18, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Masarone, D.; Limongelli, G.; Ammendola, E.; Verrengia, M.; Gravino, R.; Pacileo, G. Risk stratification of sudden cardiac death in patients with heart failure: An update. J. Clin. Med. 2018, 7, 436. [Google Scholar] [CrossRef] [PubMed]
- Deyell, M.W.; Krahn, A.D.; Goldberger, J.J. Sudden cardiac death risk stratification. Circ. Res. 2015, 116, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Nollo, G.; Faes, L.; Antolini, R.; Porta, A. Assessing causality in normal and impaired short-term cardiovascular regulation via nonlinear prediction methods. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1423–1440. [Google Scholar] [CrossRef] [PubMed]
- Faes, L.; Kugiumtzis, D.; Nollo, G.; Jurysta, F.; Marinazzo, D. Estimating the decomposition of predictive information in multivariate systems. Phys. Rev. E 2015, 91, 032904. [Google Scholar] [CrossRef] [PubMed]
Clinical Variable | SR (N = 25) | VA (N = 41) |
---|---|---|
Age [years] | 58.9 ± 9.7 | 62.2 ± 11.0 |
Gender [male] | 23 (92) | 30 (73) |
Ischemic etiology | 12 (48) | 27 (66) |
Disease duration < 2 years | 18 (72) | 13 (32) * |
History of paroxysmal atrial fibrillation | 3 (12) | 7 (17) |
Significant number of VES on the 24 h ECG Holter before recording | 6 (24) | 23 (56) * |
LVEF [%] | 25.8 ± 5.6 | 25.3 ± 5.8 |
NYHA class II | 20 (80) | 34 (83) |
NYHA class III | 5 (20) | 7 (17) |
Hypertension | 11 (44) | 33 (80) * |
Diabetes mellitus | 5 (20) | 13 (32) |
Dyslipidemia | 13 (52) | 26 (63) |
Tobacco smoking | 11 (44) | 23 (56) |
COPD | 2 (8) | 3 (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cairo, B.; Pernice, R.; Radovanović, N.N.; Faes, L.; Porta, A.; Platiša, M.M. State Space Correspondence and Cross-Entropy Methods in the Assessment of Bidirectional Cardiorespiratory Coupling in Heart Failure. Entropy 2025, 27, 770. https://doi.org/10.3390/e27070770
Cairo B, Pernice R, Radovanović NN, Faes L, Porta A, Platiša MM. State Space Correspondence and Cross-Entropy Methods in the Assessment of Bidirectional Cardiorespiratory Coupling in Heart Failure. Entropy. 2025; 27(7):770. https://doi.org/10.3390/e27070770
Chicago/Turabian StyleCairo, Beatrice, Riccardo Pernice, Nikola N. Radovanović, Luca Faes, Alberto Porta, and Mirjana M. Platiša. 2025. "State Space Correspondence and Cross-Entropy Methods in the Assessment of Bidirectional Cardiorespiratory Coupling in Heart Failure" Entropy 27, no. 7: 770. https://doi.org/10.3390/e27070770
APA StyleCairo, B., Pernice, R., Radovanović, N. N., Faes, L., Porta, A., & Platiša, M. M. (2025). State Space Correspondence and Cross-Entropy Methods in the Assessment of Bidirectional Cardiorespiratory Coupling in Heart Failure. Entropy, 27(7), 770. https://doi.org/10.3390/e27070770