Quantifying Bot Impact: An Information-Theoretic Analysis of Complexity and Uncertainty in Online Political Communication Dynamics
Abstract
:1. Introduction
2. Literature Review
2.1. A Brief History of Bots
2.2. Social Bots with a Political Agenda
2.3. Online Political Communication as a Dynamical Process
2.4. Research Questions
3. Data and Methods
3.1. Binning of Variables
3.2. Dependent Variables
3.2.1. Predictive Complexity (C)
3.2.2. Remaining Uncertainty (h)
3.3. Independent Variables
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Holz, T. A Short Visit to the Bot Zoo [malicious Bots Software]. IEEE Secur. Priv. 2005, 3, 76–79. [Google Scholar] [CrossRef]
- Lebeuf, C.; Storey, M.-A.; Zagalsky, A. Software Bots. IEEE Softw. 2018, 35, 18–23. [Google Scholar] [CrossRef]
- Hilbert, M.; Darmon, D. How Complexity and Uncertainty Grew with Algorithmic Trading. Entropy 2020, 22, 499. [Google Scholar] [CrossRef]
- Woolley, S.C.; Howard, P.N. Political Communication, Computational Propaganda, and Autonomous Agents: Introduction. Int. J. Commun. Syst. 2016, 10. [Google Scholar]
- Fogg, B.J. Persuasive Technology: Using Computers to Change What We Think and Do. Ubiquity 2002, 2002, 2. [Google Scholar] [CrossRef]
- Yan, C.; Dillard, J.P.; Shen, F. Emotion, Motivation, and the Persuasive Effects of Message Framing. J. Commun. 2012, 62, 682–700. [Google Scholar] [CrossRef]
- Bastos, M.T.; Mercea, D. The Brexit Botnet and User-Generated Hyperpartisan News. Soc. Sci. Comput. Rev. 2019, 37, 38–54. [Google Scholar] [CrossRef]
- Bessi, A.; Ferrara, E. Social Bots Distort the 2016 US Presidential Election Online Discussion. First Monday 2016, 21, 11. [Google Scholar] [CrossRef]
- Ferrara, E. Disinformation and Social Bot Operations in the Run Up to the 2017 French Presidential Election. arXiv 2017, arXiv:1707.00086. [Google Scholar]
- Howard, P.N.; Woolley, S.; Calo, R. Algorithms, bots, and political communication in the US 2016 election: The challenge of automated political communication for election law and administration. J. Inf. Technol. Impact 2018, 15, 81–93. [Google Scholar] [CrossRef]
- Cai, M.; Luo, H.; Meng, X.; Cui, Y. Differences in Behavioral Characteristics and Diffusion Mechanisms: A Comparative Analysis Based on Social Bots and Human Users. Front. Phys. 2022, 10, 875574. [Google Scholar] [CrossRef]
- Ferrara, E.; Varol, O.; Davis, C.; Menczer, F.; Flammini, A. The rise of social bots. Commun. ACM 2016, 59, 96–104. [Google Scholar] [CrossRef]
- Wischnewski, M.; Ngo, T.; Bernemann, R.; Jansen, M.; Krämer, N. ‘I agree with you, bot!’ How users (dis)engage with social bots on Twitter. New Media Soc. 2022, 26, 1505–1526. [Google Scholar] [CrossRef]
- Broniatowski, D.A.; Jamison, A.M.; Qi, S.; AlKulaib, L.; Chen, T.; Benton, A.; Quinn, S.; Dredze, M. Weaponized Health Communication: Twitter Bots and Russian Trolls Amplify the Vaccine Debate. Am. J. Public Health 2018, 108, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, S.; Howard, P.N.; Kollanyi, B.; Neudert, L.-M. Sourcing and Automation of Political News and Information over Social Media in the United States, 2016–2018. Political Commun. 2020, 37, 173–193. [Google Scholar] [CrossRef]
- Ferrara, E. What Types of COVID-19 Conspiracies are Populated by Twitter Bots? arXiv 2020, arXiv:2004.09531. [Google Scholar] [CrossRef]
- Vosoughi, S.; Roy, D.; Aral, S. The spread of true and false news online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Woolley, S. The Political Economy of Bots: Theory and Method in the Study of Social Automation. In The Political Economy of Robots: Prospects for Prosperity and Peace in the Automated 21st Century; Kiggins, R., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 127–155. [Google Scholar]
- Duan, Z.; Li, J.; Lukito, J.; Yang, K.-C.; Chen, F.; Shah, D.V.; Yang, S. Algorithmic Agents in the Hybrid Media System: Social Bots, Selective Amplification, and Partisan News about COVID-19. Hum. Commun. Res. 2022, 48, 516–542. [Google Scholar] [CrossRef]
- González-Bailón, S.; De Domenico, M. Bots are less central than verified accounts during contentious political events. Proc. Natl. Acad. Sci. USA 2021, 118, e2013443118. [Google Scholar] [CrossRef]
- Fui-Hoon Nah, F.; Zheng, R.; Cai, J.; Siau, K.; Chen, L. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. J. Inf. Technol. Case Appl. Res. 2023, 25, 277–304. [Google Scholar] [CrossRef]
- Shin, D.; Koerber, A.; Lim, J.S. Impact of misinformation from generative AI on user information processing: How people understand misinformation from generative AI. New Media Soc. 2024. [Google Scholar] [CrossRef]
- Cappella, J.N.; Planalp, S. Talk and Silence Sequences in Informal Conversations III: Interspeaker Influence. Hum. Commun. Res. 1981, 7, 117–132. [Google Scholar] [CrossRef]
- Ellis, D.G.; Fisher, B.A. Phases of Conflict in Small Group Development: A Markov Analysis. Hum. Commun. Res. 1975, 1, 195–212. [Google Scholar] [CrossRef]
- Fisher, B.A. Decision emergence: Phases in group decision-making. Speech Monogr. 1970, 37, 53–66. [Google Scholar] [CrossRef]
- Poole, M.S.; Roth, J. Decision Development in Small Groups IV: A Typology of Group Decision Paths. Hum. Commun. Res. 1989, 15, 323–356. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk. SSSR 1958, 119, 861–864. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Entropy per unit time as a metric invariant of automorphisms. Dokl Akad Nauk SSSR 1959, 124, 754–755. [Google Scholar]
- Kolmogorov, A.N. Three approaches to the quantitative definition of information. Int. J. Comput. Math. 1968, 2, 157–168. [Google Scholar] [CrossRef]
- Sinai, Y.G. On the concept of entropy of a dynamical system. Dokl Akad Nauk SSSR 1959, 124, 768–771. [Google Scholar]
- Crutchfield, J.P.; Ellison, C.J.; Mahoney, J.R. Time’s Barbed Arrow: Irreversibility, Crypticity, and Stored Information. Phys. Rev. Lett. 2009, 103, 094101. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, M.; Darmon, D. Large-scale communication is more complex and unpredictable with automated bots. J. Commun. 2020, 70, 670–692. [Google Scholar] [CrossRef]
- Franklin, S.; Graesser, A. Is It an agent, or just a program? A taxonomy for autonomous agents. In Proceedings of the Intelligent Agents III Agent Theories, Architectures, and Languages, Budapest, Hungary, 12–13 August 1996; pp. 21–35. [Google Scholar]
- Gorwa, R.; Guilbeault, D. Unpacking the Social Media Bot: A Typology to Guide Research and Policy. Policy Internet 2020, 12, 225–248. [Google Scholar] [CrossRef]
- Tsvetkova, M.; García-Gavilanes, R.; Floridi, L.; Yasseri, T. Even good bots fight: The case of Wikipedia. PLoS ONE 2017, 12, e0171774. [Google Scholar] [CrossRef]
- Weizenbaum, J. ELIZA—A computer program for the study of natural language communication between man and machine. Commun. ACM 1966, 9, 36–45. [Google Scholar] [CrossRef]
- Hepp, A. Artificial companions, social bots and work bots: Communicative robots as research objects of media and communication studies. Media Cult. Soc. 2020, 42, 1410–1426. [Google Scholar] [CrossRef]
- Makhortykh, M.; Urman, A.; Münch, F.V.; Heldt, A.; Dreyer, S.; Kettemann, M.C. Not all who are bots are evil: A cross-platform analysis of automated agent governance. New Media Soc. 2022, 24, 964–981. [Google Scholar] [CrossRef]
- Schanke, S.; Burtch, G.; Ray, G. Estimating the Impact of ‘Humanizing’ Customer Service Chatbots. Inf. Syst. Res. 2021, 32, 736–751. [Google Scholar] [CrossRef]
- Boshmaf, Y.; Muslukhov, I.; Beznosov, K.; Ripeanu, M. The socialbot network: When bots socialize for fame and money. In Proceedings of the 27th Annual Computer Security Applications Conference, Orlando, FL, USA, 5–9 December 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 93–102. [Google Scholar]
- Lokot, T.; Diakopoulos, N. News Bots. Digit. J. 2016, 4, 682–699. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; Zhang, Y.; Yan, G. On the impact of social botnets for spam distribution and digital-influence manipulation. In Proceedings of the 2013 IEEE Conference on Communications and Network Security (CNS), Washington, DC, USA, 14–16 October 2013; pp. 46–54. [Google Scholar]
- Goga, O.; Venkatadri, G.; Gummadi, K.P. The Doppelgänger Bot Attack: Exploring Identity Impersonation in Online Social Networks. In Proceedings of the 2015 Internet Measurement Conference, Tokyo Japan, 28–30 October 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 141–153. [Google Scholar]
- Ratkiewicz, J.; Conover, M.; Meiss, M.; Goncalves, B.; Flammini, A.; Menczer, F. Detecting and Tracking Political Abuse in Social Media. ICWSM 2011, 5, 297–304. [Google Scholar] [CrossRef]
- Jones, M.L. Silencing Bad Bots: Global, Legal and Political Questions for Mean Machine Communication. Commun. Law Policy 2018, 23, 159–195. [Google Scholar] [CrossRef]
- Stricklin, K.; McBride, M. Social Media Bots: Laws, Regulations, and Platform Policies; CAN—Strategy, Policy, Plans, and Programs Division (SP3); CNA: Singapore, 2020. [Google Scholar]
- Shao, C.; Ciampaglia, G.L.; Varol, O.; Yang, K.-C.; Flammini, A.; Menczer, F. The spread of low-credibility content by social bots. Nat. Commun. 2018, 9, 4787. [Google Scholar] [CrossRef] [PubMed]
- Stieglitz, S.; Brachten, F.; Berthelé, D.; Schlaus, M.; Venetopoulou, C.; Veutgen, D. Do Social Bots (Still) Act Different to Humans?—Comparing Metrics of Social Bots with Those of Humans. In Social Computing and Social Media. Human Behavior; Springer International Publishing: Cham, Switzerland, 2017; pp. 379–395. [Google Scholar]
- Woolley, S. Bots and computational propaganda: Automation for communication and control. In Social Media and Democracy; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Stella, M.; Ferrara, E.; De Domenico, M. Bots increase exposure to negative and inflammatory content in online social systems. Proc. Natl. Acad. Sci. USA 2018, 115, 12435–12440. [Google Scholar] [CrossRef] [PubMed]
- Boichak, O.; Hemsley, J.; Jackson, S.; Tromble, R.; Tanupabrungsun, S. Not the Bots You Are Looking For: Patterns and Effects of Orchestrated Interventions in the U.S. and German Elections. Int. J. Commun. Syst. 2021, 15, 26. [Google Scholar]
- Bruno, M.; Lambiotte, R.; Saracco, F. Brexit and bots: Characterizing the behaviour of automated accounts on Twitter during the UK election. EPJ Data Sci. 2022, 11, 17. [Google Scholar] [CrossRef]
- Castillo, S.; Allende-Cid, H.; Palma, W.; Alfaro, R.; Ramos, H.S.; Gonzalez, C.; Elortegui, C.; Santander, P. Detection of Bots and Cyborgs in Twitter: A Study on the Chilean Presidential Election in 2017. In Social Computing and Social Media. Design, Human Behavior and Analytics; Springer International Publishing: Cham, Switzerland, 2019; pp. 311–323. [Google Scholar]
- Fernquist, J.; Kaati, L.; Schroeder, R. Political Bots and the Swedish General Election. In Proceedings of the 2018 IEEE International Conference on Intelligence and Security Informatics (ISI), Miami, FL, USA, 9–11 November 2018; pp. 124–129. [Google Scholar]
- Santini, R.M.; Salles, D.; Tucci, G. Comparative Approaches to Mis/Disinformation|When Machine Behavior Targets Future Voters: The Use of Social Bots to Test Narratives for Political Campaigns in Brazil. Int. J. Commun. Syst. 2021, 15, 24. [Google Scholar]
- Uyheng, J.; Ng, L.H.X.; Carley, K.M. Active, aggressive, but to little avail: Characterizing bot activity during the 2020 Singaporean elections. Comput. Math. Organ. Theory 2021, 27, 324–342. [Google Scholar] [CrossRef]
- Nonnecke, B.; Perez de Acha, G.; Choi, A.; Crittenden, C.; Gutiérrez Cortés, F.I.; Martin Del Campo, A.; Miranda-Villanueva, O.M. Harass, mislead, & polarize: An analysis of Twitter political bots’ tactics in targeting the immigration debate before the 2018 U.S. midterm election. J. Inf. Technol. Politics 2022, 19, 423–434. [Google Scholar]
- Daume, S.; Galaz, V.; Bjersér, P. Automated Framing of Climate Change? The Role of Social Bots in the Twitter Climate Change Discourse During the 2019/2020 Australia Bushfires. Soc. Media + Soc. 2023, 9, 205630512311683. [Google Scholar] [CrossRef]
- Yuan, X.; Schuchard, R.J.; Crooks, A.T. Examining Emergent Communities and Social Bots Within the Polarized Online Vaccination Debate in Twitter. Soc. Media + Soc. 2019, 5, 2056305119865465. [Google Scholar] [CrossRef]
- Antenore, M.; Camacho Rodriguez, J.M.; Panizzi, E. A Comparative Study of Bot Detection Techniques with an Application in Twitter Covid-19 Discourse. Soc. Sci. Comput. Rev. 2023, 41, 1520–1545. [Google Scholar] [CrossRef]
- Chang, H.-C.H.; Ferrara, E. Comparative analysis of social bots and humans during the COVID-19 pandemic. SIAM J. Sci. Comput. 2022, 5, 1409–1425. [Google Scholar] [CrossRef]
- Shi, W.; Liu, D.; Yang, J.; Zhang, J.; Wen, S.; Su, J. Social Bots’ Sentiment Engagement in Health Emergencies: A Topic-Based Analysis of the COVID-19 Pandemic Discussions on Twitter. Int. J. Environ. Res. Public Health 2020, 17, 8701. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Ren, W.; Zhu, Y.; Zhang, H. Manufacturing conflict or advocating peace? A study of social bots agenda building in the Twitter discussion of the Russia-Ukraine war. J. Inf. Technol. Politics 2023, 21, 176–194. [Google Scholar] [CrossRef]
- Cresci, S. A decade of social bot detection. Commun. ACM 2020, 63, 72–83. [Google Scholar] [CrossRef]
- Yardi, S.; Romero, D.; Schoenebeck, G.; Boyd, D. Detecting spam in a Twitter network. First Monday 2009, 15, 1–4. [Google Scholar] [CrossRef]
- Varol, O.; Ferrara, E.; Davis, C.B.; Menczer, F.; Flammini, A. Online Human-Bot Interactions: Detection, Estimation, and Characterization. Proc. Int. AAAI Conf. Web Soc. Media 2017, 11, 280–289. [Google Scholar] [CrossRef]
- Yan, H.Y.; Yang, K.-C.; Menczer, F.; Shanahan, J. Asymmetrical perceptions of partisan political bots. New Media Soc. 2021, 23, 3016–3037. [Google Scholar] [CrossRef]
- Cao, Q.; Sirivianos, M.; Yang, X.; Pregueiro, T. Aiding the detection of fake accounts in large scale social online services. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, San Jose, CA, USA, 25–27 April 2012; USENIX Association: Berkeley, CA, USA, 2012; p. 15. [Google Scholar]
- Davis, C.A.; Varol, O.; Ferrara, E.; Flammini, A.; Menczer, F. BotOrNot: A System to Evaluate Social Bots. In Proceedings of the 25th International Conference Companion on World Wide Web, Montreal, QC, USA, 11–15 April 2016; Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2016; pp. 273–274. [Google Scholar]
- Kudugunta, S.; Ferrara, E. Deep neural networks for bot detection. Inf. Sci. 2018, 467, 312–322. [Google Scholar] [CrossRef]
- Subrahmanian, V.S.; Azaria, A.; Durst, S.; Kagan, V.; Galstyan, A.; Lerman, K.; Zhu, L.; Ferrara, E.; Flammini, A.; Menczer, F. The DARPA Twitter Bot Challenge. Computer 2016, 49, 38–46. [Google Scholar] [CrossRef]
- Yang, K.-C.; Varol, O.; Davis, C.A.; Ferrara, E.; Flammini, A.; Menczer, F. Arming the public with artificial intelligence to counter social bots. arXiv 2019, arXiv:1901.00912. [Google Scholar] [CrossRef]
- Beatson, O.; Gibson, R.; Cunill, M.C.; Elliot, M. Automation on Twitter: Measuring the Effectiveness of Approaches to Bot Detection. Soc. Sci. Comput. Rev. 2023, 41, 181–200. [Google Scholar] [CrossRef]
- Martini, F.; Samula, P.; Keller, T.R.; Klinger, U. Bot, or not? Comparing three methods for detecting social bots in five political discourses. Big Data Soc. 2021, 8, 20539517211033566. [Google Scholar] [CrossRef]
- Luceri, L.; Deb, A.; Badawy, A.; Ferrara, E. Red Bots Do It Better:Comparative Analysis of Social Bot Partisan Behavior. In Proceedings of the Companion 2019 World Wide Web Conference, San Francisco, CA, USA, 13–19 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1007–1012. [Google Scholar]
- Ross, B.; Pilz, L.; Cabrera, B.; Brachten, F.; Neubaum, G.; Stieglitz, S. Are social bots a real threat? An agent-based model of the spiral of silence to analyse the impact of manipulative actors in social networks. Eur. J. Inf. Syst. 2019, 28, 394–412. [Google Scholar] [CrossRef]
- Schuchard, R.; Crooks, A.T.; Stefanidis, A.; Croitoru, A. Bot stamina: Examining the influence and staying power of bots in online social networks. Appl. Netw. Sci. 2019, 4, 55. [Google Scholar] [CrossRef]
- Hagen, L.; Neely, S.; Keller, T.E.; Scharf, R.; Vasquez, F.E. Rise of the Machines? Examining the Influence of Social Bots on a Political Discussion Network. Soc. Sci. Comput. Rev. 2022, 40, 264–287. [Google Scholar] [CrossRef]
- Keijzer, M.A.; Mäs, M. The strength of weak bots. Online Soc. Netw. Media 2021, 21, 100106. [Google Scholar] [CrossRef]
- Pescetelli, N.; Barkoczi, D.; Cebrian, M. Bots influence opinion dynamics without direct human-bot interaction: The mediating role of recommender systems. Appl. Netw. Sci. 2022, 7, 46. [Google Scholar] [CrossRef]
- Bail, C.A.; Guay, B.; Maloney, E.; Combs, A.; Hillygus, D.S.; Merhout, F.; Freelon, D.; Volfovsky, A. Assessing the Russian Internet Research Agency’s impact on the political attitudes and behaviors of American Twitter users in late 2017. Proc. Natl. Acad. Sci. USA 2020, 117, 243–250. [Google Scholar] [CrossRef]
- Yan, H.Y.; Yang, K.C.; Shanahan, J.; Menczer, F. Exposure to social bots amplifies perceptual biases and regulation propensity. Sci. Rep. 2023, 13, 20707. [Google Scholar] [CrossRef]
- Ngo, T.; Wischnewski, M.; Bernemann, R.; Jansen, M.; Krämer, N. Spot the bot: Investigating user’s detection cues for social bots and their willingness to verify Twitter profiles. Comput. Human Behav. 2023, 146, 107819. [Google Scholar] [CrossRef]
- Aldayel, A.; Magdy, W. Characterizing the role of bots’ in polarized stance on social media. Soc. Netw. Anal. Min. 2022, 12, 30. [Google Scholar] [CrossRef]
- Kenny, R.; Fischhoff, B.; Davis, A.; Carley, K.M.; Canfield, C. Duped by Bots: Why Some are Better than Others at Detecting Fake Social Media Personas. Hum. Factors 2024, 66, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Luceri, L.; Deb, A.; Giordano, S.; Ferrara, E. Evolution of bot and human behavior during elections. First Monday 2019, 24, 9. [Google Scholar] [CrossRef]
- Assenmacher, D.; Clever, L.; Frischlich, L.; Quandt, T.; Trautmann, H.; Grimme, C. Demystifying Social Bots: On the Intelligence of Automated Social Media Actors. Soc. Media + Soc. 2020, 6, 2056305120939264. [Google Scholar] [CrossRef]
- Crutchfield, J.P.; Feldman, D.P. Regularities unseen, randomness observed: Levels of entropy convergence. Chaos 2003, 13, 25–54. [Google Scholar] [CrossRef]
- Frank, S.A. Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory. J. Evol. Biol. 2012, 25, 2377–2396. [Google Scholar] [CrossRef]
- Gallistel, C.R.; Matzel, L.D. The neuroscience of learning: Beyond the Hebbian synapse. Annu. Rev. Psychol. 2013, 64, 169–200. [Google Scholar] [CrossRef]
- Heath, R.A. Nonlinear Dynamics: Techniques and Applications in Psychology; Psychology Press: East Sussex, UK, 2014. [Google Scholar]
- Crutchfield, J.P. The origins of computational mechanics: A brief intellectual history and several clarifications. arXiv 2017, arXiv:1710.06832. [Google Scholar]
- Waldherr, A.; Geise, S.; Mahrt, M.; Katzenbach, C.; Nuernbergk, C. Toward a Stronger Theoretical Grounding of Computational Communication Science: How Macro Frameworks Shape Our Research Agendas. Comput. Commun. Res. 2021, 3, 152–179. [Google Scholar] [CrossRef]
- Grimme, C.; Preuss, M.; Adam, L.; Trautmann, H. Social Bots: Human-Like by Means of Human Control? Big Data 2017, 5, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, J.P. Between order and chaos. Nat. Phys. 2011, 8, 17–24. [Google Scholar] [CrossRef]
- Crutchfield, J.P.; Young, K. Inferring statistical complexity. Phys. Rev. Lett. 1989, 63, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Darmon, D. Statistical Methods for Analyzing Time Series Data Drawn from Complex Social Systems. Doctoral Thesis, University of Maryland, College Park, MD, USA, 2015. [Google Scholar]
- Shalizi, C.R.; Shalizi, K.L. Blind Construction of Optimal Nonlinear Recursive Predictors for Discrete Sequences. arXiv 2004, arXiv:cs/0406011. [Google Scholar] [CrossRef]
- Ekman, P.; Sorenson, E.R.; Friesen, W.V. Pan-cultural elements in facial displays of emotion. Science 1969, 164, 86–88. [Google Scholar] [CrossRef]
- Hilbert, M.; Ahmed, S.; Cho, J.; Liu, B.; Luu, J. Communicating with Algorithms: A Transfer Entropy Analysis of Emotions-based Escapes from Online Echo Chambers. Commun. Methods Meas. 2018, 12, 260–275. [Google Scholar] [CrossRef]
- Zhang, W.; Xi, Y.; Chen, A. Why do replies appear? A multi-level event history analysis of online policy discussions. New Media Soc. 2020, 22, 1484–1504. [Google Scholar] [CrossRef]
- Jurgens, A.; Crutchfield, J.P. Taxonomy of Prediction. arXiv 2025, arXiv:2504.11371. [Google Scholar]
- Shalizi, C.R.; Crutchfield, J.P. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. J. Stat. Phys. 2001, 104, 817–879. [Google Scholar] [CrossRef]
- Cover, T.M.; Joy, T.A. Elements of Information Theory; John Wiley & Sons, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Yang, K.-C.; Ferrara, E.; Menczer, F. Botometer 101: Social bot practicum for computational social scientists. SIAM J. Sci. Comput. 2022, 5, 1511–1528. [Google Scholar] [CrossRef]
- Butler, B.S. Membership size, communication activity, and sustainability: A resource-based model of online social structures. Inf. Syst. Res. 2001, 12, 346–362. [Google Scholar] [CrossRef]
- Cunha, T.; Jurgens, D.; Tan, C.; Romero, D. Are All Successful Communities Alike? Characterizing and Predicting the Success of Online Communities. In The World Wide Web Conference.; Association for Computing Machinery: New York, NY, USA, 2019; pp. 318–328. [Google Scholar]
- Kollock, P.; Smith, M. Managing the Virtual Commons: Cooperation and Conflict in Computer Communities. In Computer-Mediated Communication: Linguistic, Social, and Cross-Cultural Perspectives; Herring, S.C., Ed.; John Benjamins: Philadelphia, PA, USA, 1996; pp. 109–128. [Google Scholar]
- Panek, E.; Hollenbach, C.; Yang, J.; Rhodes, T. The Effects of Group Size and Time on the Formation of Online Communities: Evidence From Reddit. Soc. Media + Soc. 2018, 4, 205630511881590. [Google Scholar] [CrossRef]
- Darmon, D. A Python Implementation of the Causal State Splitting Reconstruction Algorithm. 2020. Available online: https://github.com/3tz/transCSSR (accessed on 22 May 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulat, B.; Hilbert, M. Quantifying Bot Impact: An Information-Theoretic Analysis of Complexity and Uncertainty in Online Political Communication Dynamics. Entropy 2025, 27, 573. https://doi.org/10.3390/e27060573
Bulat B, Hilbert M. Quantifying Bot Impact: An Information-Theoretic Analysis of Complexity and Uncertainty in Online Political Communication Dynamics. Entropy. 2025; 27(6):573. https://doi.org/10.3390/e27060573
Chicago/Turabian StyleBulat, Beril, and Martin Hilbert. 2025. "Quantifying Bot Impact: An Information-Theoretic Analysis of Complexity and Uncertainty in Online Political Communication Dynamics" Entropy 27, no. 6: 573. https://doi.org/10.3390/e27060573
APA StyleBulat, B., & Hilbert, M. (2025). Quantifying Bot Impact: An Information-Theoretic Analysis of Complexity and Uncertainty in Online Political Communication Dynamics. Entropy, 27(6), 573. https://doi.org/10.3390/e27060573