On the Stochastic Motion Induced by Magnetic Fields in Random Environments
Abstract
:1. Introduction
2. Navier–Stokes Equation with Harmonic Force and Magnetic Fields
2.1. Fokker–Planck Equation in Velocity and Magnetic Field
2.2. , and in the Short-Time Domain
2.2.1. , , and in Navier–Stokes Equation for the Velocity
2.2.2. , , and in Navier–Stokes Equation for the Magnetic Field
2.3. , , and in the Long Time Domain
2.3.1. , , and in Navier–Stokes Equation for Velocity
2.3.2. , , and for the Magnetic Field
2.4. , , and in
2.4.1. , , and for the Velocity
2.4.2. , , and for the Magnetic Field
3. Moment Equation, Kurtosis, Correlation Coefficient, Moment, and Entropy
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Time Domain | v, h | x, v, h | ||||
---|---|---|---|---|---|---|
v | x | |||||
v | ||||||
h | ||||||
h | x | |||||
v | ||||||
h | ||||||
v | x | |||||
v | ||||||
h | ||||||
h | x | |||||
v | ||||||
h | ||||||
v | x | |||||
v | ||||||
h | ||||||
h | x | |||||
v | ||||||
h |
References
- Hur, S.C.; Tse, H.T.R.; Di Carlo, D. Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 2010, 10, 274. [Google Scholar] [PubMed]
- Mach, A.J.; Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 2010, 107, 302. [Google Scholar] [CrossRef] [PubMed]
- Piomelli, U.; Balaras, E. Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 2002, 34, 349. [Google Scholar]
- Bose, S.T.; Park, G.I. Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 2018, 50, 535. [Google Scholar]
- Hausmann, M.; Elmestikawy, H.; van Wachemar, B. Physically consistent immersed boundary method: A framework for predicting hydrodynamic forces on particles with coarse meshes. arXiv 2024, arXiv:2406.04722v1. [Google Scholar]
- Mittal, R.; Iaccarino, G. Immersed Boundary Methods. Annu. Rev. Fluid Mech. 2005, 37, 239. [Google Scholar]
- Clarke, D.K.; Hassan, H.A.; Salas, M.D. Euler Calculations for Multielement Airfoils Using Cartesian Grids. AIAA J. 1986, 24, 353–358. [Google Scholar]
- Majumdar, S.; Iaccarino, G.; Durbin, P. RANS solvers with adaptive structured boundary non-conforming grids. Cent. Turbul. Res. Annu. Res. Briefs 2001, 1, 353. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics; MIT: Cambridge, CA, USA, 1975; Volume 2. [Google Scholar]
- Wyld, H.W. Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 1961, 14, 143. [Google Scholar]
- Lee, L.L. A formulation of the theory of isotropic hydromagnetic turbulence in an incompressible fluid. Ann. Phys. 1964, 32, 292. [Google Scholar]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 1977, 16, 732. [Google Scholar]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid. Phys. Rev. Lett. 1976, 36, 867. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Lebedev, N.M.; Tumakova, M.M. Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili. Symmetry 2023, 15, 1556. [Google Scholar] [CrossRef]
- Antonov, N.V.; Babakin, A.A.; Gulitskiy, N.M.; Kakin, P.I. Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth in Random Environment. arXiv 2024, arXiv:2407.13783v1. [Google Scholar]
- Nam, K.; Ott, E.E.; Antonsen, T.M.; Guzdar, P.N. Lagrangian Chaos and the Effect of Drag on the Enstrophy Cascade in Two-Dimensional Turbulence. Phys. Rev. Lett. 2000, 84, 5134. [Google Scholar]
- Rivera, M.; Vorobieff, P.; Ecke, R.E. Turbulence in Flowing Soap Films: Velocity, Vorticity, and Thickness Fields. Phys. Rev. Lett. 1998, 81, 1417. [Google Scholar]
- Martin, B.K.; Wu, X.L.; Goldburg, W.I. Spectra of Decaying Turbulence in a Soap Film. Phys. Rev. Lett. 1998, 80, 3964. [Google Scholar]
- Sommeria, J.; Meyers, S.D.; Swinney, H.L. Laboratory model of a planetary eastward jet. Nature 1989, 337, 58. [Google Scholar] [CrossRef]
- Solomon, T.H.; Weeks, E.R.; Swinney, H.L. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 1993, 71, 3975. [Google Scholar] [CrossRef]
- Enz, C.P. Two-fluid hydrodynamic description of ordered systems. Rev. Mod. Phys. 1974, 46, 705. [Google Scholar]
- Kelley, M.C.; Ott, E. Two-dimensional turbulence in equatorial spread. J. Geophys. Res. 1978, 83, 4369. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; van Ness, J.W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 1968, 10, 422. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134. [Google Scholar] [CrossRef]
- Metzler, R.; Glockle, W.G.; Nonnencher, T.F. Fractional model equation for anomalous diffusion. Physica A 1994, 211, 13. [Google Scholar] [CrossRef]
- Fogedby, H.C. Lévy flights in quenched random force fields. Phys. Rev. E 1998, 58, 1690. [Google Scholar] [CrossRef]
- Fogedby, H.C. Lévy Flights in Random Environments. Phys. Rev. Lett. 1994, 73, 2517. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Fractional kinetic equation for Hamiltonian chaos. Chaos 1994, 4, 25. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Local Fractional Fokker-Planck Equation. Phys. Rev. Lett. 1998, 80, 214. [Google Scholar] [CrossRef]
- Heinrichs, J. Probability distributions for second-order processes driven by Gaussian noise. Phys. Rev. E 1993, 47, 3007. [Google Scholar] [CrossRef]
- Risken, H. The Fokker—Planck Equation: Methods of Solution and Application, Latest ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Athanassoulis, G.A.; Nikolaos, P.; Nikoletatos-Kekatos, N.P.; Mamis, K.I. A systematic path to non-Markovian dynamics II: Probabilistic response of nonlinear multidimensional systems to Gaussian colored noise excitation. arXiv 2024, arXiv:2405.10236. [Google Scholar]
- Mamis, K.I. Probabilistic Responses of Dynamical Systems Subjected to Gaussian Colored Noise Excitation. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 2022. [Google Scholar]
- Mamis, K.; Farazmand, M. Mitigation of rare events in multistable systems driven by correlated noise. Phys. Rev. E 2021, 104, 034201. [Google Scholar]
- Doerries, J.T.J.; Loos, S.A.M.; Klapp, S.H.L. Correlation functions of non-Markovian systems out of equilibrium: Analytical expressions beyond single-exponential memory. J. Stat. Mech. 2021, 2021, 033202. [Google Scholar]
- Cherstvy, A.G.; Safdari, H.; Metzler, R. Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity: Striking differences for massive versus massless particles. J. Phys. D Appl. Phys. 2021, 54, 195401. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Wang, W.; Metzler, R.; Sokolov, I.M. Inertia triggers nonergodicity of fractional Brownian motion. Phys. Rev. E 2021, 104, 024115. [Google Scholar] [CrossRef]
- Caprini, L.; Marini, U.; Marconi, B.; Vulpiani, A. Linear response and correlation of a self-propelled particle in the presence of external fields. J. Stat. Mech. 2018, 2018, 033203. [Google Scholar]
- Caprini, L.; Marconi, U.M.B. Inertial self-propelled particles. J. Chem. Phys. 2018, 154, 024902. [Google Scholar]
- Sprenger, A.R.; Caprini, L.; Löwen, H.; Wittmann, R. Dynamics of active particles with translational and rotational inertia. J. Phys. Condens. Matter 2023, 35, 305101. [Google Scholar] [CrossRef] [PubMed]
- Spiechowicz, J.; Marchenko, I.G.; Hänggi, P.; Łuczka, J. Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond. Entropy 2024, 25, 42. [Google Scholar]
- Zhang, W.; Li, Y.; Marchesoni, F.; Misko, V.R.; Ghosh, P.K. Narrow Pore Crossing of Active Particles under Stochastic Resetting. Entropy 2023, 25, 271. [Google Scholar] [CrossRef]
- Boltz, H.H.; Kohler, B.; Ihle, T. Kinetic Theory of Self-Propelled Particles with Nematic Alignment. Entropy 2024, 26, 1054. [Google Scholar] [CrossRef]
- Eichhorn, R. Derivation of the Langevin Equation from the Microcanonical Ensemble. Entropy 2024, 26, 277. [Google Scholar] [CrossRef] [PubMed]
- Evstigneev, M.; Kacmazer, D. Fast and Accurate Numerical Integration of the Langevin Equation with Multiplicative Gaussian White Noise. Entropy 2024, 26, 879. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.J.; Jung, J.W.; Seo, S.K.; Kim, K. On the Stochastic Motion Induced by Magnetic Fields in Random Environments. Entropy 2025, 27, 330. https://doi.org/10.3390/e27040330
Kang YJ, Jung JW, Seo SK, Kim K. On the Stochastic Motion Induced by Magnetic Fields in Random Environments. Entropy. 2025; 27(4):330. https://doi.org/10.3390/e27040330
Chicago/Turabian StyleKang, Yun Jeong, Jae Won Jung, Sung Kyu Seo, and Kyungsik Kim. 2025. "On the Stochastic Motion Induced by Magnetic Fields in Random Environments" Entropy 27, no. 4: 330. https://doi.org/10.3390/e27040330
APA StyleKang, Y. J., Jung, J. W., Seo, S. K., & Kim, K. (2025). On the Stochastic Motion Induced by Magnetic Fields in Random Environments. Entropy, 27(4), 330. https://doi.org/10.3390/e27040330