On the Stochastic Motion Induced by Magnetic Fields in Random Environments
Abstract
1. Introduction
2. Navier–Stokes Equation with Harmonic Force and Magnetic Fields
2.1. Fokker–Planck Equation in Velocity and Magnetic Field
2.2. , and in the Short-Time Domain
2.2.1. , , and in Navier–Stokes Equation for the Velocity
2.2.2. , , and in Navier–Stokes Equation for the Magnetic Field
2.3. , , and in the Long Time Domain
2.3.1. , , and in Navier–Stokes Equation for Velocity
2.3.2. , , and for the Magnetic Field
2.4. , , and in
2.4.1. , , and for the Velocity
2.4.2. , , and for the Magnetic Field
3. Moment Equation, Kurtosis, Correlation Coefficient, Moment, and Entropy
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Time Domain | v, h | x, v, h | ||||
---|---|---|---|---|---|---|
v | x | |||||
v | ||||||
h | ||||||
h | x | |||||
v | ||||||
h | ||||||
v | x | |||||
v | ||||||
h | ||||||
h | x | |||||
v | ||||||
h | ||||||
v | x | |||||
v | ||||||
h | ||||||
h | x | |||||
v | ||||||
h |
References
- Hur, S.C.; Tse, H.T.R.; Di Carlo, D. Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 2010, 10, 274. [Google Scholar] [PubMed]
- Mach, A.J.; Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 2010, 107, 302. [Google Scholar] [CrossRef] [PubMed]
- Piomelli, U.; Balaras, E. Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 2002, 34, 349. [Google Scholar]
- Bose, S.T.; Park, G.I. Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 2018, 50, 535. [Google Scholar]
- Hausmann, M.; Elmestikawy, H.; van Wachemar, B. Physically consistent immersed boundary method: A framework for predicting hydrodynamic forces on particles with coarse meshes. arXiv 2024, arXiv:2406.04722v1. [Google Scholar]
- Mittal, R.; Iaccarino, G. Immersed Boundary Methods. Annu. Rev. Fluid Mech. 2005, 37, 239. [Google Scholar]
- Clarke, D.K.; Hassan, H.A.; Salas, M.D. Euler Calculations for Multielement Airfoils Using Cartesian Grids. AIAA J. 1986, 24, 353–358. [Google Scholar]
- Majumdar, S.; Iaccarino, G.; Durbin, P. RANS solvers with adaptive structured boundary non-conforming grids. Cent. Turbul. Res. Annu. Res. Briefs 2001, 1, 353. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics; MIT: Cambridge, CA, USA, 1975; Volume 2. [Google Scholar]
- Wyld, H.W. Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 1961, 14, 143. [Google Scholar]
- Lee, L.L. A formulation of the theory of isotropic hydromagnetic turbulence in an incompressible fluid. Ann. Phys. 1964, 32, 292. [Google Scholar]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 1977, 16, 732. [Google Scholar]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid. Phys. Rev. Lett. 1976, 36, 867. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Lebedev, N.M.; Tumakova, M.M. Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili. Symmetry 2023, 15, 1556. [Google Scholar] [CrossRef]
- Antonov, N.V.; Babakin, A.A.; Gulitskiy, N.M.; Kakin, P.I. Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth in Random Environment. arXiv 2024, arXiv:2407.13783v1. [Google Scholar]
- Nam, K.; Ott, E.E.; Antonsen, T.M.; Guzdar, P.N. Lagrangian Chaos and the Effect of Drag on the Enstrophy Cascade in Two-Dimensional Turbulence. Phys. Rev. Lett. 2000, 84, 5134. [Google Scholar]
- Rivera, M.; Vorobieff, P.; Ecke, R.E. Turbulence in Flowing Soap Films: Velocity, Vorticity, and Thickness Fields. Phys. Rev. Lett. 1998, 81, 1417. [Google Scholar]
- Martin, B.K.; Wu, X.L.; Goldburg, W.I. Spectra of Decaying Turbulence in a Soap Film. Phys. Rev. Lett. 1998, 80, 3964. [Google Scholar]
- Sommeria, J.; Meyers, S.D.; Swinney, H.L. Laboratory model of a planetary eastward jet. Nature 1989, 337, 58. [Google Scholar] [CrossRef]
- Solomon, T.H.; Weeks, E.R.; Swinney, H.L. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 1993, 71, 3975. [Google Scholar] [CrossRef]
- Enz, C.P. Two-fluid hydrodynamic description of ordered systems. Rev. Mod. Phys. 1974, 46, 705. [Google Scholar]
- Kelley, M.C.; Ott, E. Two-dimensional turbulence in equatorial spread. J. Geophys. Res. 1978, 83, 4369. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; van Ness, J.W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 1968, 10, 422. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134. [Google Scholar] [CrossRef]
- Metzler, R.; Glockle, W.G.; Nonnencher, T.F. Fractional model equation for anomalous diffusion. Physica A 1994, 211, 13. [Google Scholar] [CrossRef]
- Fogedby, H.C. Lévy flights in quenched random force fields. Phys. Rev. E 1998, 58, 1690. [Google Scholar] [CrossRef]
- Fogedby, H.C. Lévy Flights in Random Environments. Phys. Rev. Lett. 1994, 73, 2517. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Fractional kinetic equation for Hamiltonian chaos. Chaos 1994, 4, 25. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Local Fractional Fokker-Planck Equation. Phys. Rev. Lett. 1998, 80, 214. [Google Scholar] [CrossRef]
- Heinrichs, J. Probability distributions for second-order processes driven by Gaussian noise. Phys. Rev. E 1993, 47, 3007. [Google Scholar] [CrossRef]
- Risken, H. The Fokker—Planck Equation: Methods of Solution and Application, Latest ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Athanassoulis, G.A.; Nikolaos, P.; Nikoletatos-Kekatos, N.P.; Mamis, K.I. A systematic path to non-Markovian dynamics II: Probabilistic response of nonlinear multidimensional systems to Gaussian colored noise excitation. arXiv 2024, arXiv:2405.10236. [Google Scholar]
- Mamis, K.I. Probabilistic Responses of Dynamical Systems Subjected to Gaussian Colored Noise Excitation. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 2022. [Google Scholar]
- Mamis, K.; Farazmand, M. Mitigation of rare events in multistable systems driven by correlated noise. Phys. Rev. E 2021, 104, 034201. [Google Scholar]
- Doerries, J.T.J.; Loos, S.A.M.; Klapp, S.H.L. Correlation functions of non-Markovian systems out of equilibrium: Analytical expressions beyond single-exponential memory. J. Stat. Mech. 2021, 2021, 033202. [Google Scholar]
- Cherstvy, A.G.; Safdari, H.; Metzler, R. Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity: Striking differences for massive versus massless particles. J. Phys. D Appl. Phys. 2021, 54, 195401. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Wang, W.; Metzler, R.; Sokolov, I.M. Inertia triggers nonergodicity of fractional Brownian motion. Phys. Rev. E 2021, 104, 024115. [Google Scholar] [CrossRef]
- Caprini, L.; Marini, U.; Marconi, B.; Vulpiani, A. Linear response and correlation of a self-propelled particle in the presence of external fields. J. Stat. Mech. 2018, 2018, 033203. [Google Scholar]
- Caprini, L.; Marconi, U.M.B. Inertial self-propelled particles. J. Chem. Phys. 2018, 154, 024902. [Google Scholar]
- Sprenger, A.R.; Caprini, L.; Löwen, H.; Wittmann, R. Dynamics of active particles with translational and rotational inertia. J. Phys. Condens. Matter 2023, 35, 305101. [Google Scholar] [CrossRef] [PubMed]
- Spiechowicz, J.; Marchenko, I.G.; Hänggi, P.; Łuczka, J. Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond. Entropy 2024, 25, 42. [Google Scholar]
- Zhang, W.; Li, Y.; Marchesoni, F.; Misko, V.R.; Ghosh, P.K. Narrow Pore Crossing of Active Particles under Stochastic Resetting. Entropy 2023, 25, 271. [Google Scholar] [CrossRef]
- Boltz, H.H.; Kohler, B.; Ihle, T. Kinetic Theory of Self-Propelled Particles with Nematic Alignment. Entropy 2024, 26, 1054. [Google Scholar] [CrossRef]
- Eichhorn, R. Derivation of the Langevin Equation from the Microcanonical Ensemble. Entropy 2024, 26, 277. [Google Scholar] [CrossRef] [PubMed]
- Evstigneev, M.; Kacmazer, D. Fast and Accurate Numerical Integration of the Langevin Equation with Multiplicative Gaussian White Noise. Entropy 2024, 26, 879. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.J.; Jung, J.W.; Seo, S.K.; Kim, K. On the Stochastic Motion Induced by Magnetic Fields in Random Environments. Entropy 2025, 27, 330. https://doi.org/10.3390/e27040330
Kang YJ, Jung JW, Seo SK, Kim K. On the Stochastic Motion Induced by Magnetic Fields in Random Environments. Entropy. 2025; 27(4):330. https://doi.org/10.3390/e27040330
Chicago/Turabian StyleKang, Yun Jeong, Jae Won Jung, Sung Kyu Seo, and Kyungsik Kim. 2025. "On the Stochastic Motion Induced by Magnetic Fields in Random Environments" Entropy 27, no. 4: 330. https://doi.org/10.3390/e27040330
APA StyleKang, Y. J., Jung, J. W., Seo, S. K., & Kim, K. (2025). On the Stochastic Motion Induced by Magnetic Fields in Random Environments. Entropy, 27(4), 330. https://doi.org/10.3390/e27040330