On Dynamical Measures of Quantum Information
Abstract
:1. Introduction
2. The Entropy of a Quantum Process
3. Mathematical Properties of the Entropy Functional
- i.
- Extension: is the von Neumann entropy of X for every density matrix X.
- ii.
- Unitary Invariance: for every unitary U and for all .
- iv.
- Additivity: for all quasi-states and .
- ii.
- Strong Convex Linearity: If is a quasi-probability distribution (so that ) and is a collection of mutually orthogonal quasi-states, then
- v.
- Continuity: The entropy function S is continuous. Moreover, if have multispectrums and such that for all , and if , then
- The statement follows from the fact that a density matrix X is positive and therefore satisfies .
- The statement follows from the cyclicity of the trace and the functional calculus for matrices, or equivalently, from the fact that has the same eigenvalues as X.
- Suppose and , so that . Then,
- Let denote the multispectrum of for all , so that the multispectrum of is , where . Then,
- Let be the function given byTo prove the Fannes-type inequality (14), we adapt the standard proof for density matrices to the case at hand (cf. Theorem 11.6 of Ref. [45]). Let be the function given by , and let be the odd completion of , so that . Suppose now that are unit trace elements with multispectrums and , suppose for all , and also suppose , so that . Then,
4. Dynamical Measures of Quantum Information
- The conditional entropy of is the real number given by
- The mutual information of is the real number given by
- The information discrepancy of is the real number given by
5. On the Non-Negativity of Dynamical Mutual Information
6. The Information Gain Due to Measurement
- i.
- If is non-disturbing, then .
- ii.
- If is disturbing, then .
- Suppose is non-disturbing so that is invariant with respect to for all k. It then follows from (20) that is a rank-1 projection since . Therefore, for all k. Thus, by Proposition 2.
- Suppose is disturbing so that there exists a k such that is not invariant with respect to . It then follows from (20) that is of rank 2. We now show that is not positive by determining its non-zero eigenvalues. For this purpose, let , so that and . Writing an arbitrary eigenvector of as , with , the eigenvalue equation yieldsBy the linear independence of , this guaranteesThese equations then yield the quadratic equationNote that , as expected. Now let be an orthonormal basis of containing . By using the completeness relation(cf. Figure 1). This argument, together with the proof of item i, yields whenever is invariant with respect to and whenever is not invariant with respect to . It then follows from Proposition 2 that if is disturbing, then , as desired. □
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Eigenvalues of a State Over Time Associated with a Unitary Process
References
- Chruściński, D.; Matsuoka, T. Quantum conditional probability and measurement induced disturbance of a quantum channel. Rep. Math. Phys. 2020, 86, 115–128. [Google Scholar] [CrossRef]
- Gour, G.; Wilde, M.M. Entropy of a quantum channel. Phys. Rev. Res. 2021, 3, 023096. [Google Scholar]
- Jia, Z.; Song, M.; Kaszlikowski, D. Quantum space-time marginal problem: Global causal structure from local causal information. New J. Phys. 2023, 25, 123038. [Google Scholar] [CrossRef]
- Kurzyk, D.; Pawela, Ł.; Puchała, Z. Relating Entropies of Quantum Channels. Entropy 2021, 23, 1028. [Google Scholar] [CrossRef]
- Lindblad, G. Quantum entropy and quantum measurements. In Quantum Aspects of Optical Communications: Proceedings of a Workshop Held at the CNRS, Paris, France, 26–28 November 1990; Springer: Berlin/Heidelberg, Germany, 1991; pp. 71–80. [Google Scholar]
- Matsuoka, T.; Chruściński, D. Compound state, its conditionality and quantum mutual information. In International Conference on Quantum Probability & Related Topics; Springer: Cham, Switzerland, 2022; pp. 135–150. [Google Scholar]
- Roga, W.; Życzkowski, K.; Fannes, M. Entropic characterization of quantum operations. Int. J. Quantum Inf. 2011, 9, 1031–1045. [Google Scholar]
- Salek, S.; Schubert, R.; Wiesner, K. Negative conditional entropy of postselected states. Phys. Rev. A 2014, 90, 022116. [Google Scholar] [CrossRef]
- Schumacher, B. Sending entanglement through noisy quantum channels. Phys. Rev. A 1996, 54, 2614–2628. [Google Scholar] [PubMed]
- Schumacher, B.; Nielsen, M.A. Quantum data processing and error correction. Phys. Rev. A 1996, 54, 2629–2635. [Google Scholar]
- Horsman, D.; Heunen, C.; Pusey, M.F.; Barrett, J.; Spekkens, R.W. Can a quantum state over time resemble a quantum state at a single time? Proc. R. Soc. A 2017, 473, 20170395. [Google Scholar] [CrossRef]
- Baez, J.C.; Fritz, T.; Leinster, T. A characterization of entropy in terms of information loss. Entropy 2011, 13, 1945–1957. [Google Scholar] [CrossRef]
- Fullwood, J.; Parzygnat, A.J. The information loss of a stochastic map. Entropy 2021, 23, 1021. [Google Scholar] [CrossRef] [PubMed]
- Fullwood, J.; Parzygnat, A.J. Operator representation of spatiotemporal quantum correlations. arXiv 2024, arXiv:2405.17555. [Google Scholar]
- Lie, S.H.; Ng, N.H.Y. Quantum state over time is unique. Phys. Rev. Res. 2024, 6, 033144. [Google Scholar] [CrossRef]
- Parzygnat, A.J.; Fullwood, J.; Buscemi, F.; Chiribella, G. Virtual quantum broadcasting. Phys. Rev. Lett. 2024, 132, 110203. [Google Scholar] [PubMed]
- Parzygnat, A.J.; Fullwood, J. From time-reversal symmetry to quantum Bayes’ rules. PRX Quantum 2023, 4, 020334. [Google Scholar]
- Nakata, Y.; Takayanagi, T.; Taki, Y.; Tamaoka, K.; Wei, Z. New holographic generalization of entanglement entropy. Phys. Rev. D 2021, 103, 026005. [Google Scholar]
- Leifer, M.S. Quantum dynamics as an analog of conditional probability. Phys. Rev. A 2006, 74, 042310. [Google Scholar]
- Leifer, M.S. Conditional Density Operators and the Subjectivity of Quantum Operations. In Foundations of Probability and Physics—4; American Institute of Physics Conference, Series; Adenier, G., Fuchs, C., Khrennikov, A.Y., Eds.; AIP Publishing: Melville, NY, USA, 2007; Volume 889, pp. 172–186. [Google Scholar]
- Leifer, M.S.; Spekkens, R.W. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 2013, 88, 052130. [Google Scholar]
- Fitzsimons, J.F.; Jones, J.A.; Vedral, V. Quantum correlations which imply causation. Sci. Rep. 2015, 5, 18281. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time symmetry in the quantum process of measurement. Phys. Rev. 1964, 134, B1410–B1416. [Google Scholar]
- Reznik, B.; Aharonov, Y. Time-symmetric formulation of quantum mechanics. Phys. Rev. A 1995, 52, 2538–2550. [Google Scholar]
- Watanabe, S. Symmetry of Physical Laws. Part III. Prediction and Retrodiction. Rev. Mod. Phys. 1955, 27, 179–186. [Google Scholar]
- Wootters, W.K. A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. 1987, 176, 1–21. [Google Scholar]
- Ohya, M. Note on quantum probability. Lett. Nuovo C. 1983, 38, 402–404. [Google Scholar]
- Cotler, J.; Jian, C.; Qi, X.; Wilczek, F. Superdensity operators for spacetime quantum mechanics. J. High Energy Phys. 2018, 2018, 93. [Google Scholar]
- Oreshkov, O.; Costa, F.; Brukner, Č. Quantum correlations with no causal order. Nat. Commun. 2012, 3, 1092. [Google Scholar]
- Parzygnat, A.J.; Fullwood, J. Time-symmetric correlations for open quantum systems. arXiv 2024, arXiv:2407.11123. [Google Scholar]
- Nishioka, T.; Takayanagi, T.; Taki, Y. Topological pseudo entropy. J. High Energy Phys. 2021, 2021, 015. [Google Scholar]
- Parzygnat, A.J.; Takayanagi, T.; Taki, Y.; Wei, Z. SVD Entanglement Entropy. J. High Energ. Phys. 2023, 2023, 123. [Google Scholar]
- Fullwood, J.; Parzygnat, A.J. On quantum states over time. Proc. R. Soc. A 2022, 478, 20220104. [Google Scholar]
- Lane, S.M. Categories for the working mathematician. In Graduate Texts in Mathematics, 2nd ed.; Springer: New York, NY, USA, 1998; Volume 5. [Google Scholar]
- Riehl, E. Category Theory in Context; Aurora: Dover Modern Math Originals; Dover Publications: Mineola, NY, USA, 2017. [Google Scholar]
- Tu, Y.-T.; Tzeng, Y.-C.; Chang, P.-Y. Rényi entropies and negative central charges in non-Hermitian quantum systems. SciPost Phys. 2022, 12, 194. [Google Scholar] [CrossRef]
- Cipolloni, G.; Kudler-Flam, J. Entanglement Entropy of Non-Hermitian Eigenstates and the Ginibre Ensemble. Phys. Rev. Lett. 2023, 130, 010401. [Google Scholar] [CrossRef] [PubMed]
- Page, D.N. Average entropy of a subsystem. Phys. Rev. Lett. 1993, 71, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef] [PubMed]
- Sen, S. Average entropy of a quantum subsystem. Phys. Rev. Lett. 1996, 77, 1–3. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, Y.; Dahlsten, O.; Vedral, V. Quantum Causal Inference with Extremely Light Touch. arXiv 2023, arXiv:2303.10544. [Google Scholar]
- Song, M.; Narasimhachar, V.; Regula, B.; Elliott, T.J.; Gu, M. Causal classification of spatiotemporal quantum correlations. Phys. Rev. Lett. 2024, 133, 110202. [Google Scholar] [CrossRef]
- Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972, 3, 275–278. [Google Scholar] [CrossRef]
- Lostaglio, M.; Belenchia, A.; Levy, A.; Hernández-Gómez, S.; Fabbri, N.; Gherardini, S. Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables. Quantum 2023, 7, 1128. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Audenaert, K.M.R. A sharp continuity estimate for the von Neumann entropy. J. Phys. A Math. Theor. 2007, 40, 8127. [Google Scholar] [CrossRef]
- Watrous, J. The Theory of Quantum Information; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra Its Appl. 1975, 10, 285–290. [Google Scholar]
- Bhatia, R.; Rosenthal, P. How and why to solve the operator equation AX-XB=Y. Bull. Lond. Math. Soc. 1997, 29, 1–21. [Google Scholar]
- Higham, N.J. Functions of Matrices: Theory and Computation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar]
- Liu, X.; Chen, Q.; Dahlsten, O. Inferring the arrow of time in quantum spatiotemporal correlations. Phys. Rev. A 2024, 109, 032219. [Google Scholar]
- Personick, S.D. Application of quantum estimation theory to analog communication over quantum channels. IEEE Trans. Inf. Theory 1971, 17, 240–246. [Google Scholar]
- Buscemi, F.; Dall’Arno, M.; Ozawa, M.; Vedral, V. Direct observation of any two-point quantum correlation function. arXiv 2013, arXiv:1312.4240. [Google Scholar]
- Couvreur, R.; Jacobsen, J.L.; Saleur, H. Entanglement in nonunitary quantum critical spin chains. Phys. Rev. Lett. 2017, 119, 040601. [Google Scholar] [PubMed]
- Liu, H.; Liu, Z.; Chen, S.; Nie, X.; Liu, X.; Lu, D. Certifying Quantum Temporal Correlation via Randomized Measurements: Theory and Experiment. Phys. Rev. Lett. 2025, 134, 040201. [Google Scholar] [PubMed]
- Wilde, M.M. Quantum Information Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Cerf, N.J.; Adami, C. Negative entropy in quantum information theory. In New Developments on Fundamental Problems in Quantum Physics (Oviedo, 1996); Fund. Theories Phys; Kluwer Academic Publishers: Dordrecht, The Netherland, 1997; Volume 81, pp. 77–84. [Google Scholar]
- Rio, L.D.; Åberg, J.; Renner, R.; Dahlsten, O.; Vedral, V. The thermodynamic meaning of negative entropy. Nature 2011, 474, 61–63. [Google Scholar]
- Horodecki, M.; Oppenheim, J.; Winter, A. Partial quantum information. Nature 2005, 436, 673. [Google Scholar]
- Parzygnat, A.J. A functorial characterization of von Neumann entropy. Cah. Topol. Géom. Différ. Catég. 2022, LXIII, 89–128. [Google Scholar]
- Reeb, D.; Wolf, M.M. An improved Landauer principle with finite-size corrections. New J. Phys. 2014, 16, 103011. [Google Scholar]
- Kukulski, R.; Nechita, I.; Pawela, Ł.; Puchała, Z.; Życzkowski, K. Generating random quantum channels. J. Math. Phys. 2021, 62, 062201. [Google Scholar]
- Adami, C.; Cerf, N.J. von Neumann capacity of noisy quantum channels. Phys. Rev. A 1997, 56, 3470–3483. [Google Scholar]
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar]
- Feynman, R.P. Negative probability. In Quantum Implications: Essays in Honour of David Bohm; Routledge: London, UK, 1987; pp. 235–248. [Google Scholar]
- Dirac, P.A.M. On the analogy between classical and quantum mechanics. Rev. Mod. Phys. 1945, 17, 195–199. [Google Scholar]
- Gherardini, S.; De Chiara, G. Quasiprobabilities in quantum thermodynamics and many-body systems. PRX Quantum 2024, 5, 030201. [Google Scholar]
- Kirkwood, J.G. Quantum statistics of almost classical assemblies. Phys. Rev. 1933, 44, 31–37. [Google Scholar]
- Devetak, I. The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 2005, 51, 44–55. [Google Scholar]
- Lloyd, S. Capacity of the noisy quantum channel. Phys. Rev. A 1997, 55, 1613–1622. [Google Scholar]
- Shor, P.W. Quantum information theory: Results and open problems. In Visions in Mathematics; Birkhäuser: Basel, Switzerland, 2000; pp. 816–838. [Google Scholar]
- Shor, P.W. Capacities of quantum channels and how to find them. Math. Program. 2003, 97, 311–335. [Google Scholar]
- Mathematica, Version 13.0; Wolfram Research, Inc.: Champaign, IL, USA, 2021.
Classical Static | Classical Dynamic | Quantum Static | Quantum Dynamic | |
---|---|---|---|---|
entropy | ✓ | ✓ | ✓ | × |
conditional entropy | ✓ | ✓ | × | × |
mutual information | ✓ | ✓ | ✓ | ✓? |
information discrepancy | ✓ | ✓ | × | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fullwood, J.; Parzygnat, A.J. On Dynamical Measures of Quantum Information. Entropy 2025, 27, 331. https://doi.org/10.3390/e27040331
Fullwood J, Parzygnat AJ. On Dynamical Measures of Quantum Information. Entropy. 2025; 27(4):331. https://doi.org/10.3390/e27040331
Chicago/Turabian StyleFullwood, James, and Arthur J. Parzygnat. 2025. "On Dynamical Measures of Quantum Information" Entropy 27, no. 4: 331. https://doi.org/10.3390/e27040331
APA StyleFullwood, J., & Parzygnat, A. J. (2025). On Dynamical Measures of Quantum Information. Entropy, 27(4), 331. https://doi.org/10.3390/e27040331