Penalized Exponentially Tilted Likelihood for Growing Dimensional Models with Missing Data
Abstract
:1. Introduction
2. Model and Notation
3. Asymptotic Properties
3.1. Asymptotic Properties for Correctly Specified EEs
- (i)
- and as , where the notation represents the convergence in probability.
- (ii)
- , where satisfies as , is a nonnegative symmetric matrix, and denotes convergence in distribution.
3.2. Asymptotic Properties for Misspecified EEs
- (i)
- (Consistency) , where denotes convergence in probability;
- (ii)
- (Oracle property) with probability tending to one;
- (iii)
- (Asymptotic normality) , where , , , τ is the Lagrange multiplier, vector is the first-order derivatives of the penalized log-ET likelihood ratio function for misspecified EEs under constraint in which is the projection matrix, and denotes convergence in distribution.
4. Simulation Studies
5. Real Examples
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Theorems
References
- Godambe, V.P. Estimating Functions, 1st ed.; Oxford University: Oxford, UK, 1991. [Google Scholar]
- Carroll, R.; Ruppert, D.; Stefanski, L.; Crainiceanu, C. Nonlinear Measurement Error Models, A Modern Perspective, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Hardin, J.W.; Hilbe, J.M. Generalized Estimating Equations, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Hansen, L.P. Large Sample Properties of Generalized Method of Moments Estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Kitamura, Y. Empirical likelihood methods with weakly dependent processes. Ann. Stat. 1997, 25, 2084–2102. [Google Scholar] [CrossRef]
- Owen, A.B. Empirical likelihood ratio confidence intervals for a single functional. Biometrika 1988, 75, 237–249. [Google Scholar] [CrossRef]
- Qin, J.; Lawless, J. Empirical likelihood and general estimating Equations. Ann. Stat. 1994, 22, 300–325. [Google Scholar] [CrossRef]
- Tang, N.; Yan, X.; Zhao, P. Exponentially tilted likelihood inference on growing dimensional unconditional moment models. J. Econom. 2018, 202, 57–74. [Google Scholar] [CrossRef]
- Newey, W.; Smith, R.J. Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 2003, 72, 219–255. [Google Scholar] [CrossRef]
- Anatolyev, S. GMM, GEL, serial correlation, and asymptotic bias. Econometrica 2005, 73, 983–1002. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. b-Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Lv, J.; Fan, Y. A unified approach to model selection and sparse recovery using regularized least squares. Ann. Stat. 2009, 37, 3498–3528. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Nature: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Lam, C.; Fan, J. Profile-kernel likelihood inference with diverging number of parameters. Ann. Stat. 2008, 36, 2232–2260. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhang, H.H. On the adaptive elastic-net with a diverging number of parameters. Ann. Stat. 2009, 37, 1733–1751. [Google Scholar] [CrossRef] [PubMed]
- Caner, M.; Zhang, H.H. Adaptive elastic net for generalized methods of moments. J. Bus. Econ. Stat. 2014, 32, 30–47. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, S.; Zhao, L.-P.; Ou, S.-T. Weighted semiparametric estimation in regression analysis with missing covariate data. J. Am. Stat. Assoc. 1997, 92, 512–525. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, S.; Gutierrez, R.G.; Carroll, R.J. Local linear regression for generalized linear models with missing data. Ann. Stat. 1998, 26, 1028–1050. [Google Scholar]
- Scharfstein, D.O.; Rotnitzky, A.; Robins, J.M. Adjusting for nonignorable drop-out using semiparametric nonresponse models. J. Am. Stat. Assoc. 1999, 94, 1096–1146. [Google Scholar] [CrossRef]
- FitzGerald, E.B. Extended generalized estimating equations for binary familial data with incomplete families. Biometrics 2002, 58, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Huang, Y.; Chao, E.C.; Jeffcoat, M.K. Expected estimating equations for missing data, measurement error and misclassification, with application to longitudinal nonignorable missing data. Biometrics 2008, 64, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liang, H. Statistical inference for semiparametric varying coefficient partially linear models with generated regressors. Ann. Stat. 2008, 37, 427–458. [Google Scholar]
- Tang, N.; Zhao, P.; Zhu, H.T. Empirical likelihood for estimating equations with nonignorably missing data. Stat. Sin. 2014, 24, 723–747. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhang, X.; Sun, Y.; Wang, L.; Zhao, Y. Weighted estimating equations for additive hazards models with missing covariates. Ann. Inst. Stat. Math. 2018, 71, 365–387. [Google Scholar] [CrossRef]
- Shao, J.; Wang, L. Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika 2016, 103, 175–187. [Google Scholar] [CrossRef]
- Tang, N.; Xia, L.; Yan, X. Feature screening in ultrahigh-dimensional partially linear models with missing responses at random. Comput. Stat. Data Anal. 2019, 133, 208–227. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, X. Adaptive empirical likelihood estimation with nonignorable nonresponse data. Statistics 2019, 54, 1–22. [Google Scholar] [CrossRef]
- Wang, S.; Shao, J.; Kim, J.K. An instrumental variable approach for identification and estimation with nonignorable nonresponse. Stat. Sin. 2014, 24, 1097–1116. [Google Scholar] [CrossRef]
- Stock, J.H. Instrumental variables in statistics and econometrics. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 205–209. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Imai, K.; Ratkovic, M. Robust estimation of inverse probability weights for marginal structural models. J. Am. Stat. Assoc. 2015, 110, 1013–1023. [Google Scholar] [CrossRef]
- Robins, J.; Rotnitzky, A.; Zhao, L.P. Estimation of regression coefficients when some regressors are not always observed. J. Am. Stat. Assoc. 1994, 89, 846–866. [Google Scholar] [CrossRef]
- Robins, J.; Rotnitzky, A.; Zhao, L.P. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Stat. Assoc. 1995, 90, 106–121. [Google Scholar] [CrossRef]
- Hirano, K.; Imbens, G.; Ridder, G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 2003, 71, 1161–1189. [Google Scholar] [CrossRef]
- Owen, A.B. Empirical Likelihood, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Papini, E.; Guglielmi, R.; Bianchini, A.; Crescenzi, A.; Taccogna, S.; Nardi, F.; Panunzi, C.; Rinaldi, R.; Toscano, V.; Pacella, C.M. Risk of malignancy in nonpalpable thyroid nodules: Predictive value of ultrasound and color-Doppler features. J. Clin. Endocrinol. Metab. 2002, 87, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Park, H.; Oh, Y.L.; Shin, J.H.; Kim, T.H.; Hahn, S.Y. Role of ultrasound in predicting telomerase reverse transcriptase (TERT) promoter mutation in follicular thyroid carcinoma. Sci. Rep. 2024, 14, 15323. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Gu, J.; Ye, X.; Xu, S.; Wu, Y.; Shao, X.; Liu, D.; Lu, W.; Hua, F.; Shi, B.; et al. Thyroid nodule sizes influence the diagnostic performance of TIRADS and ultrasound patterns of 2015 ATA guidelines: A multicenter retrospective study. Sci. Rep. 2017, 7, 43183. [Google Scholar] [CrossRef]
Bias | SD | RMSE | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | TP | FP | UF | CF | OF | ||||||||||
(50,9) | M1 | −0.0256 | 0.0811 | −0.0285 | 0.841 | 0.863 | 0.313 | 0.842 | 0.867 | 0.315 | 5.779 | 0.141 | 0.196 | 0.697 | 0.107 |
M2 | −0.0465 | −0.0255 | 0.1355 | 0.537 | 0.501 | 0.870 | 0.539 | 0.502 | 0.880 | 5.576 | 0.165 | 0.334 | 0.563 | 0.103 | |
M3 | −0.0001 | −0.0132 | 0.0427 | 0.851 | 0.793 | 0.822 | 0.851 | 0.793 | 0.823 | 5.689 | 0.139 | 0.262 | 0.639 | 0.099 | |
(100,13) | M1 | 0.0464 | −0.0228 | −0.0195 | 0.750 | 0.146 | 0.135 | 0.751 | 0.148 | 0.137 | 9.785 | 0.101 | 0.174 | 0.752 | 0.074 |
M2 | −0.0714 | −0.0357 | −0.0548 | 0.378 | 0.741 | 0.708 | 0.384 | 0.742 | 0.710 | 9.584 | 0.142 | 0.297 | 0.611 | 0.092 | |
M3 | 0.0487 | −0.0118 | −0.0230 | 0.803 | 0.221 | 0.210 | 0.805 | 0.221 | 0.211 | 9.752 | 0.095 | 0.196 | 0.736 | 0.068 | |
(200,17) | M1 | −0.0175 | −0.0044 | −0.0042 | 0.153 | 0.088 | 0.088 | 0.154 | 0.088 | 0.089 | 13.905 | 0.039 | 0.082 | 0.881 | 0.037 |
M2 | −0.0293 | −0.0193 | −0.0158 | 0.186 | 0.141 | 0.125 | 0.188 | 0.143 | 0.126 | 13.811 | 0.081 | 0.137 | 0.794 | 0.069 | |
M3 | −0.0234 | −0.0288 | −0.0081 | 0.168 | 0.218 | 0.118 | 0.169 | 0.220 | 0.118 | 13.850 | 0.068 | 0.116 | 0.825 | 0.059 | |
(500,23) | M1 | 0.0000 | 0.0000 | 0.0001 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 19.975 | 0.000 | 0.022 | 0.978 | 0.000 |
M2 | −0.0050 | 0.0001 | 0.0014 | 0.094 | 0.084 | 0.077 | 0.094 | 0.084 | 0.077 | 19.929 | 0.015 | 0.061 | 0.927 | 0.012 | |
M3 | −0.0003 | −0.0004 | 0.0003 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 19.970 | 0.000 | 0.028 | 0.972 | 0.000 | |
(500,101) | M1 | −0.0004 | −0.0005 | −0.0001 | 0.050 | 0.010 | 0.010 | 0.050 | 0.010 | 0.010 | 97.934 | 0.000 | 0.040 | 0.960 | 0.000 |
M2 | −0.0068 | −0.0013 | −0.0036 | 0.096 | 0.073 | 0.069 | 0.096 | 0.074 | 0.069 | 97.703 | 0.024 | 0.145 | 0.834 | 0.021 | |
M3 | −0.0044 | 0.0043 | −0.0031 | 0.077 | 0.076 | 0.046 | 0.077 | 0.076 | 0.046 | 97.902 | 0.012 | 0.063 | 0.925 | 0.012 | |
Bias | SD | RMSE | |||||||||||||
Case | TP | FP | UF | CF | OF | ||||||||||
(50,5) | M1 | −0.0950 | 0.0261 | −0.0159 | 0.369 | 0.786 | 0.296 | 0.381 | 0.786 | 0.297 | 1.905 | 0.176 | 0.093 | 0.747 | 0.160 |
M2 | −0.0680 | −0.0516 | −0.0246 | 0.570 | 0.526 | 0.513 | 0.574 | 0.528 | 0.513 | 1.864 | 0.174 | 0.128 | 0.732 | 0.140 | |
M3 | 0.0055 | −0.0391 | −0.0298 | 0.786 | 0.481 | 0.459 | 0.786 | 0.483 | 0.460 | 1.871 | 0.103 | 0.123 | 0.790 | 0.087 | |
(100,7) | M1 | −0.0410 | 0.0457 | 0.0849 | 0.229 | 0.795 | 0.791 | 0.232 | 0.796 | 0.796 | 3.923 | 0.112 | 0.075 | 0.825 | 0.100 |
M2 | −0.0368 | 0.0230 | −0.0212 | 0.445 | 0.852 | 0.410 | 0.446 | 0.852 | 0.411 | 3.818 | 0.141 | 0.161 | 0.727 | 0.112 | |
M3 | −0.0687 | −0.1052 | −0.0268 | 0.727 | 0.712 | 0.322 | 0.730 | 0.720 | 0.323 | 3.900 | 0.138 | 0.094 | 0.785 | 0.121 | |
(200,9) | M1 | −0.0263 | −0.0240 | −0.0074 | 0.199 | 0.138 | 0.163 | 0.200 | 0.140 | 0.163 | 5.955 | 0.066 | 0.042 | 0.893 | 0.065 |
M2 | −0.0324 | 0.0002 | 0.0036 | 0.556 | 0.551 | 0.544 | 0.556 | 0.551 | 0.544 | 5.920 | 0.062 | 0.072 | 0.873 | 0.055 | |
M3 | −0.0229 | −0.0188 | −0.0089 | 0.175 | 0.148 | 0.110 | 0.177 | 0.150 | 0.110 | 5.954 | 0.066 | 0.040 | 0.899 | 0.061 | |
(500,12) | M1 | 0.0001 | −0.0005 | −0.0000 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 8.981 | 0.000 | 0.019 | 0.981 | 0.000 |
M2 | −0.0143 | −0.0147 | −0.0127 | 0.119 | 0.111 | 0.080 | 0.120 | 0.112 | 0.081 | 8.971 | 0.058 | 0.028 | 0.917 | 0.055 | |
M3 | −0.0002 | 0.0001 | −0.0003 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 8.989 | 0.000 | 0.011 | 0.989 | 0.000 | |
(500,51) | M1 | −0.0195 | −0.0138 | −0.0090 | 0.134 | 0.107 | 0.065 | 0.135 | 0.108 | 0.065 | 47.957 | 0.052 | 0.035 | 0.915 | 0.050 |
M2 | −0.0068 | −0.0073 | −0.0049 | 0.092 | 0.092 | 0.060 | 0.093 | 0.092 | 0.060 | 47.862 | 0.026 | 0.083 | 0.894 | 0.023 | |
M3 | −0.0173 | −0.0160 | −0.0023 | 0.168 | 0.109 | 0.053 | 0.169 | 0.110 | 0.053 | 47.900 | 0.032 | 0.070 | 0.901 | 0.029 |
Bias | SD | RMSE | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | TP | FP | UF | CF | OF | ||||||||||
(50,9) | PETL | −0.0200 | −0.0327 | −0.0237 | 0.843 | 0.218 | 0.220 | 0.844 | 0.221 | 0.222 | 5.760 | 0.124 | 0.208 | 0.698 | 0.094 |
HT | 0.0013 | −0.0486 | 0.0221 | 0.958 | 0.591 | 0.910 | 0.958 | 0.593 | 0.911 | 4.103 | 0.330 | 0.717 | 0.200 | 0.083 | |
ST | −0.0346 | −0.0349 | 0.0358 | 0.923 | 0.848 | 0.884 | 0.924 | 0.849 | 0.885 | 2.961 | 0.222 | 0.854 | 0.114 | 0.032 | |
PLS | −0.1264 | −0.0767 | −0.0232 | 0.762 | 0.974 | 0.732 | 0.772 | 0.977 | 0.732 | 4.507 | 0.365 | 0.699 | 0.214 | 0.087 | |
(100,13) | PETL | 0.0477 | −0.0238 | −0.0195 | 0.749 | 0.227 | 0.218 | 0.750 | 0.228 | 0.219 | 9.792 | 0.089 | 0.167 | 0.767 | 0.066 |
HT | −0.1052 | −0.0493 | 0.0476 | 0.482 | 0.421 | 0.813 | 0.494 | 0.424 | 0.815 | 7.994 | 0.238 | 0.530 | 0.365 | 0.105 | |
ST | −0.0732 | −0.0083 | −0.0501 | 0.538 | 0.497 | 0.489 | 0.543 | 0.497 | 0.491 | 4.475 | 0.157 | 0.774 | 0.196 | 0.030 | |
PLS | −0.0250 | −0.0364 | 0.0230 | 0.868 | 0.565 | 0.832 | 0.869 | 0.566 | 0.833 | 8.799 | 0.326 | 0.523 | 0.342 | 0.135 | |
(200,17) | PETL | 0.0063 | 0.0006 | 0.0017 | 0.165 | 0.081 | 0.080 | 0.165 | 0.081 | 0.080 | 13.909 | 0.000 | 0.074 | 0.926 | −0.000 |
HT | −0.0558 | −0.0372 | −0.0278 | 0.277 | 0.479 | 0.200 | 0.283 | 0.480 | 0.202 | 12.867 | 0.143 | 0.287 | 0.616 | 0.097 | |
ST | −0.0303 | −0.0310 | −0.0268 | 0.191 | 0.375 | 0.376 | 0.193 | 0.377 | 0.377 | 8.295 | 0.090 | 0.603 | 0.363 | 0.034 | |
PLS | −0.0275 | −0.0138 | −0.0102 | 0.182 | 0.136 | 0.123 | 0.184 | 0.137 | 0.123 | 13.485 | 0.083 | 0.206 | 0.734 | 0.060 | |
(500,101) | PETL | 0.0000 | −0.0004 | −0.0001 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 97.984 | 0.000 | 0.012 | 0.988 | 0.000 |
HT | −0.0286 | −0.0124 | −0.0181 | 0.181 | 0.121 | 0.119 | 0.183 | 0.122 | 0.120 | 94.261 | 0.096 | 0.138 | 0.781 | 0.081 | |
ST | −0.0075 | −0.0018 | −0.0054 | 0.118 | 0.080 | 0.081 | 0.118 | 0.080 | 0.081 | 74.997 | 0.021 | 0.450 | 0.536 | 0.014 | |
PLS | −0.0537 | −0.0404 | −0.0346 | 0.236 | 0.158 | 0.200 | 0.242 | 0.163 | 0.203 | 95.283 | 0.195 | 0.305 | 0.565 | 0.130 | |
Bias | SD | RMSE | |||||||||||||
Case | TP | FP | UF | CF | OF | ||||||||||
(50,5) | PETL | −0.0852 | 0.0307 | −0.0106 | 0.331 | 0.785 | 0.247 | 0.342 | 0.785 | 0.247 | 1.904 | 0.152 | 0.094 | 0.768 | 0.138 |
HT | −0.1180 | −0.0948 | −0.0058 | 0.622 | 0.565 | 0.694 | 0.633 | 0.572 | 0.694 | 1.332 | 0.331 | 0.505 | 0.342 | 0.153 | |
ST | −0.0448 | −0.0687 | −0.0474 | 0.885 | 0.683 | 0.649 | 0.886 | 0.687 | 0.650 | 1.076 | 0.201 | 0.691 | 0.250 | 0.059 | |
PLS | −0.1135 | −0.0745 | −0.0625 | 0.776 | 0.762 | 0.763 | 0.784 | 0.766 | 0.766 | 1.586 | 0.274 | 0.345 | 0.489 | 0.166 | |
(100,7) | PETL | −0.0476 | −0.0422 | −0.0232 | 0.299 | 0.267 | 0.247 | 0.302 | 0.270 | 0.248 | 3.923 | 0.127 | 0.074 | 0.814 | 0.112 |
HT | −0.0459 | −0.0020 | −0.0367 | 0.785 | 0.802 | 0.395 | 0.787 | 0.802 | 0.397 | 3.203 | 0.233 | 0.461 | 0.424 | 0.115 | |
ST | 0.0010 | −0.0369 | −0.0412 | 0.810 | 0.800 | 0.485 | 0.810 | 0.801 | 0.487 | 1.767 | 0.191 | 0.765 | 0.201 | 0.034 | |
PLS | −0.1247 | −0.1587 | −0.1148 | 0.870 | 0.794 | 0.778 | 0.879 | 0.810 | 0.786 | 3.548 | 0.343 | 0.316 | 0.459 | 0.225 | |
(200,9) | PETL | −0.0161 | −0.0239 | −0.0121 | 0.144 | 0.140 | 0.097 | 0.145 | 0.142 | 0.097 | 5.955 | 0.058 | 0.040 | 0.902 | 0.058 |
HT | −0.0386 | −0.0296 | −0.0288 | 0.261 | 0.233 | 0.225 | 0.264 | 0.235 | 0.227 | 5.433 | 0.125 | 0.276 | 0.635 | 0.089 | |
ST | −0.0331 | −0.0295 | −0.0151 | 0.205 | 0.179 | 0.131 | 0.208 | 0.182 | 0.132 | 4.041 | 0.103 | 0.540 | 0.420 | 0.040 | |
PLS | −0.0366 | −0.0219 | −0.0215 | 0.207 | 0.164 | 0.132 | 0.210 | 0.166 | 0.133 | 5.772 | 0.106 | 0.150 | 0.764 | 0.086 | |
(500,51) | PETL | −0.0009 | 0.0003 | 0.0021 | 0.009 | 0.009 | 0.033 | 0.009 | 0.009 | 0.033 | 47.991 | 0.000 | 0.007 | 0.993 | 0.000 |
HT | −0.0259 | −0.0283 | −0.0235 | 0.167 | 0.161 | 0.113 | 0.169 | 0.163 | 0.116 | 46.242 | 0.108 | 0.127 | 0.779 | 0.094 | |
ST | −0.0366 | −0.0220 | −0.0045 | 0.334 | 0.132 | 0.082 | 0.336 | 0.134 | 0.082 | 35.787 | 0.052 | 0.447 | 0.527 | 0.026 | |
PLS | −0.0434 | −0.0359 | −0.0240 | 0.226 | 0.179 | 0.127 | 0.230 | 0.183 | 0.130 | 46.535 | 0.146 | 0.298 | 0.602 | 0.100 |
PETL | GMM | PEL | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Par | Bias | SD | RMSE | AL | CP | Bias | SD | RMSE | AL | CP | Bias | SD | RMSE | AL | CP | |
(117,8) | −0.0132 | 0.142 | 0.143 | 1.462 | 97.4 | −0.0323 | 0.316 | 0.317 | 2.646 | 88.4 | 0.0065 | 0.549 | 0.549 | 1.279 | 81.2 | |
−0.0208 | 0.154 | 0.155 | 1.952 | 97.8 | −0.0349 | 0.320 | 0.322 | 2.659 | 88.7 | −0.0253 | 0.155 | 0.157 | 1.501 | 93.7 | ||
−0.0233 | 0.161 | 0.162 | 1.945 | 97.5 | −0.0245 | 0.331 | 0.332 | 1.197 | 81.0 | −0.0229 | 0.151 | 0.152 | 1.269 | 93.5 | ||
(241,32) | −0.0064 | 0.069 | 0.069 | 0.878 | 97.1 | −0.0319 | 0.262 | 0.264 | 2.912 | 91.6 | −0.0101 | 0.105 | 0.105 | 1.312 | 93.5 | |
−0.0029 | 0.068 | 0.068 | 0.618 | 97.6 | −0.0290 | 0.146 | 0.148 | 2.994 | 94.4 | −0.0147 | 0.109 | 0.110 | 1.936 | 94.9 | ||
−0.0043 | 0.066 | 0.066 | 0.612 | 96.8 | −0.0360 | 0.160 | 0.164 | 2.945 | 92.5 | −0.0135 | 0.208 | 0.208 | 1.960 | 96.2 | ||
0.0032 | 0.174 | 0.174 | 1.177 | 97.7 | −0.0214 | 0.259 | 0.259 | 1.981 | 94.4 | −0.0095 | 0.099 | 0.099 | 1.908 | 93.8 | ||
0.0000 | 0.172 | 0.172 | 0.884 | 95.7 | −0.0332 | 0.149 | 0.153 | 1.959 | 93.2 | −0.0131 | 0.114 | 0.115 | 1.885 | 92.5 | ||
0.0103 | 0.177 | 0.178 | 1.178 | 97.6 | −0.0242 | 0.267 | 0.268 | 1.942 | 92.5 | −0.0034 | 0.232 | 0.232 | 1.935 | 94.8 | ||
−0.0046 | 0.076 | 0.076 | 0.875 | 96.2 | −0.0240 | 0.136 | 0.138 | 2.915 | 91.7 | −0.0098 | 0.231 | 0.231 | 1.927 | 94.3 | ||
(602,72) | −0.0007 | 0.029 | 0.029 | 0.598 | 99.8 | −0.0106 | 0.117 | 0.117 | 1.394 | 92.9 | −0.0082 | 0.073 | 0.074 | 1.427 | 95.1 | |
0.0009 | 0.030 | 0.030 | 0.595 | 99.3 | −0.0053 | 0.058 | 0.058 | 1.384 | 92.3 | −0.0120 | 0.084 | 0.085 | 1.429 | 95.2 | ||
0.0006 | 0.030 | 0.030 | 0.599 | 99.7 | −0.0106 | 0.078 | 0.079 | 0.579 | 90.2 | −0.0071 | 0.066 | 0.066 | 1.008 | 95.0 | ||
−0.0001 | 0.029 | 0.029 | 0.442 | 98.1 | −0.0059 | 0.061 | 0.061 | 0.584 | 91.8 | −0.0084 | 0.073 | 0.074 | 0.999 | 93.7 | ||
−0.0001 | 0.031 | 0.031 | 0.315 | 99.8 | −0.0068 | 0.063 | 0.064 | 0.986 | 93.0 | −0.0061 | 0.060 | 0.060 | 0.601 | 94.5 | ||
0.0005 | 0.030 | 0.030 | 0.450 | 99.8 | −0.0073 | 0.118 | 0.118 | 0.600 | 94.3 | −0.0056 | 0.060 | 0.061 | 1.003 | 94.7 | ||
0.0061 | 0.132 | 0.132 | 0.443 | 91.2 | −0.0057 | 0.061 | 0.061 | 0.591 | 92.8 | −0.0087 | 0.071 | 0.071 | 0.606 | 94.9 | ||
−0.0021 | 0.129 | 0.129 | 0.439 | 91.4 | −0.0082 | 0.069 | 0.069 | 1.426 | 95.1 | −0.0072 | 0.066 | 0.066 | 1.009 | 95.0 | ||
0.0010 | 0.030 | 0.030 | 0.439 | 97.5 | −0.0069 | 0.063 | 0.064 | 0.990 | 93.4 | −0.0083 | 0.073 | 0.074 | 1.003 | 94.2 | ||
0.0033 | 0.029 | 0.030 | 0.442 | 98.3 | −0.0042 | 0.051 | 0.051 | 1.386 | 92.4 | −0.0044 | 0.050 | 0.050 | 1.440 | 96.0 | ||
0.0006 | 0.029 | 0.029 | 0.440 | 98.1 | −0.0075 | 0.066 | 0.066 | 0.994 | 93.4 | −0.0047 | 0.057 | 0.057 | 1.007 | 95.2 |
PETL | GMM | PEL | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | FP | UF | CF | OF | TP | FP | UF | CF | OF | TP | FP | UF | CF | OF | |
(117,8,2) | 4.878 | 0.114 | 0.112 | 0.794 | 0.094 | 4.703 | 0.156 | 0.256 | 0.630 | 0.114 | 4.783 | 0.138 | 0.195 | 0.696 | 0.109 |
(241,32,3) | 24.840 | 0.034 | 0.122 | 0.851 | 0.027 | 24.404 | 0.358 | 0.362 | 0.441 | 0.197 | 24.354 | 0.141 | 0.343 | 0.566 | 0.091 |
(602,72,4) | 60.866 | 0.000 | 0.081 | 0.919 | 0.000 | 60.277 | 0.118 | 0.225 | 0.689 | 0.086 | 60.253 | 0.128 | 0.228 | 0.686 | 0.086 |
Lasso | ALasso | SCAD | ||||
---|---|---|---|---|---|---|
Par. | Est | CI | Est | CI | Est | CI |
−2.864 | (−3.515,−2.073) | −2.850 | (−3.248,−2.455) | −2.929 | (−3.223,−2.630) | |
0.000 | (−0.744,0.771) | −0.195 | (−0.869,0.375) | −0.012 | (−0.116,0.081) | |
−0.082 | (−0.927,0.801) | −0.046 | (−0.256,0.152) | −0.134 | (−0.241,−0.031) | |
0.000 | (−0.523,0.584) | 0.040 | (−0.640,0.614) | 0.084 | (−0.435,0.599) | |
0.000 | (−0.471,0.597) | 0.000 | (−0.656,0.600) | 0.000 | (−0.296,0.302) | |
0.000 | (−0.699,0.801) | 0.128 | (−0.505,0.727) | 0.111 | (−0.191,0.406) | |
0.000 | (−0.381,0.404) | 0.282 | (−0.282,0.871) | 0.283 | (−0.011,0.582) | |
−3.118 | (−3.643,−2.520) | −3.104 | (−3.728,−2.491) | −3.139 | (−3.636,−2.629) | |
0.000 | (−1.056,0.742) | 0.429 | (−0.223,1.006) | 0.469 | (0.169,0.769) | |
0.000 | (−0.592,0.625) | 0.000 | (−0.416,0.407) | 0.000 | (−0.505,0.496) | |
5.920 | (5.374,6.541) | 5.801 | (5.607,5.984) | 5.865 | (5.371,6.371) | |
6.205 | (5.570,6.824) | 6.343 | (5.817,6.897) | 6.207 | (5.904,6.505) | |
4.952 | (4.428,5.586) | 4.893 | (4.530,5.304) | 4.939 | (4.641,5.243) | |
4.284 | (3.599,5.111) | 4.338 | (3.789,4.867) | 4.481 | (3.987,4.990) | |
5.617 | (5.211,6.096) | 5.777 | (5.179,6.373) | 5.727 | (5.628,5.820) | |
0.000 | (−0.789,0.741) | 0.000 | (−0.389,0.405) | 0.000 | (−0.300,0.306) | |
0.000 | (−0.357,0.442) | 0.000 | (−0.433,0.393) | 0.000 | (−0.097,0.095) | |
0.000 | (−0.770,0.797) | 0.000 | (−0.425,0.412) | 0.000 | (−0.527,0.497) | |
0.000 | (−0.512,0.566) | 0.000 | (−0.615,0.584) | 0.000 | (−0.099,0.093) | |
1.633 | (1.078,2.248) | 1.231 | (0.813,1.618) | 1.230 | (0.700,1.736) | |
0.000 | (−0.784,0.797) | 0.000 | (−0.614,0.563) | 0.000 | (−0.103,0.100) | |
8.851 | (8.037,9.757) | 8.603 | (7.998,9.211) | 8.478 | (8.173,8.781) | |
0.000 | (−0.390,0.413) | 2.993 | (2.369,3.586) | 2.774 | (2.248,3.263) | |
0.000 | (−0.363,0.467) | 2.901 | (2.345,3.468) | 2.635 | (2.112,3.134) | |
0.000 | (−0.364,0.354) | 3.118 | (2.753,3.498) | 2.971 | (2.867,3.090) | |
5.647 | (5.060,6.238) | 5.452 | (5.055,5.836) | 5.461 | (4.923,5.955) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, X.; Zhao, P.; Tang, N. Penalized Exponentially Tilted Likelihood for Growing Dimensional Models with Missing Data. Entropy 2025, 27, 146. https://doi.org/10.3390/e27020146
Sha X, Zhao P, Tang N. Penalized Exponentially Tilted Likelihood for Growing Dimensional Models with Missing Data. Entropy. 2025; 27(2):146. https://doi.org/10.3390/e27020146
Chicago/Turabian StyleSha, Xiaoming, Puying Zhao, and Niansheng Tang. 2025. "Penalized Exponentially Tilted Likelihood for Growing Dimensional Models with Missing Data" Entropy 27, no. 2: 146. https://doi.org/10.3390/e27020146
APA StyleSha, X., Zhao, P., & Tang, N. (2025). Penalized Exponentially Tilted Likelihood for Growing Dimensional Models with Missing Data. Entropy, 27(2), 146. https://doi.org/10.3390/e27020146