Ref-MEF: Reference-Guided Flexible Gated Image Reconstruction Network for Multi-Exposure Image Fusion
Abstract
:1. Introduction
- We introduce a reference-guided exposure correction (REC) module, rooted in the reference image, which incorporates both channel and spatial attention. This module significantly alleviates color discrepancies and artifacts in the fused image.
- Within the reconstruction network, we deploy an exposure-guided feature fusion (EGFF) module designed to standardize features of varying lengths to a common dimension. Simultaneously, we enhance the gated context aggregation network (GCAN) to efficiently gather deeper contextual information, preserve spatial resolution, and effectively suppress grid artifacts.
- An optimized loss function is proposed to uphold lighting and texture information, ensuring the comprehensive retention of color information from the exposure sequence images.
2. Related Work
2.1. Existing MEF Methods
2.2. Most Relevant Work
3. Methodology
3.1. Reference-Guided Exposure Correction
3.2. Reconstruction Network
3.2.1. Exposure-Guided Feature Fusion
3.2.2. Gated Context Aggregation Network
3.3. Loss Function
4. Experimental Results and Comparisons
4.1. Training
4.2. Main Result
4.2.1. Qualitative Comparison
4.2.2. Quantitative Comparison
4.2.3. Running Time Comparison
4.3. Ablation Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karakaya, D.; Ulucan, O.; Turkan, M. Pas-Mef: Multi-Exposure Image Fusion Based On Principal Component Analysis, Adaptive Well-Exposedness Furthermore, Saliency Map. In Proceedings of the ICASSP 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 2345–2349. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Z. Multi-exposure image fusion: A patch-wise approach. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 1717–1721. [Google Scholar] [CrossRef]
- Paul, S.; Sevcenco, I.S.; Agathoklis, P. Multi-Exposure and Multi-Focus Image Fusion in Gradient Domain. J. Circuits Syst. Comput. 2016, 25, 1650123. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z.; Hu, S.; Kan, S. Multi-Focus Image Fusion Based on Multi-Scale Generative Adversarial Network. Entropy 2022, 24, 582. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Z.; Kong, Q.; Qi, Q.; Liao, Q. Infrared and Visible Image Fusion via Attention-Based Adaptive Feature Fusion. Entropy 2023, 25, 407. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; Zhan, W.; Zhu, D. Improved Thermal Infrared Image Super-Resolution Reconstruction Method Base on Multimodal Sensor Fusion. Entropy 2023, 25, 914. [Google Scholar] [CrossRef]
- Prabhakar, K.R.; Srikar, V.S.; Babu, R.V. DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4724–4732. [Google Scholar] [CrossRef]
- Ma, K.; Duanmu, Z.; Yeganeh, H.; Wang, Z. Multi-Exposure Image Fusion by Optimizing A Structural Similarity Index. IEEE Trans. Comput. Imaging 2018, 4, 60–72. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Zhang, X.P. MEF-GAN: Multi-Exposure Image Fusion via Generative Adversarial Networks. IEEE Trans. Image Process. 2020, 29, 7203–7216. [Google Scholar] [CrossRef]
- Qi, Y.; Zhou, S.; Zhang, Z.; Luo, S.; Lin, X.; Wang, L.; Qiang, B. Deep unsupervised learning based on color un-referenced loss functions for multi-exposure image fusion. Inf. Fusion 2021, 66, 18–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, P.; Yan, H.; Zhao, X.; Zhang, L. IFCNN: A general image fusion framework based on convolutional neural network. Inf. Fusion 2020, 54, 99–118. [Google Scholar] [CrossRef]
- Ma, K.; Duanmu, Z.; Zhu, H.; Fang, Y.; Wang, Z. Deep Guided Learning for Fast Multi-Exposure Image Fusion. IEEE Trans. Image Process. 2020, 29, 2808–2819. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, Z.; Chen, W.; Yang, W. An SIFT-Based Fast Image Alignment Algorithm for High-Resolution Image. IEEE Access 2023, 11, 42012–42041. [Google Scholar] [CrossRef]
- Liu, C.; Yuen, J.; Torralba, A. SIFT Flow: Dense Correspondence across Scenes and Its Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 978–994. [Google Scholar] [CrossRef]
- Zhu, A.Z.; Yuan, L.; Chaney, K.; Daniilidis, K. Unsupervised Event-Based Learning of Optical Flow, Depth, and Egomotion. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 989–997. [Google Scholar] [CrossRef]
- Hayat, N.; Imran, M. Ghost-free multi exposure image fusion technique using dense SIFT descriptor and guided filter. J. Vis. Commun. Image Represent. 2019, 62, 295–308. [Google Scholar] [CrossRef]
- Ma, K.; Li, H.; Yong, H.; Wang, Z.; Meng, D.; Zhang, L. Robust Multi-Exposure Image Fusion: A Structural Patch Decomposition Approach. IEEE Trans. Image Process. 2017, 26, 2519–2532. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Y.; Zheng, M.; Huang, X.; Qi, G.; Hu, H.; Zhu, Z. A Novel Multi-Exposure Image Fusion Method Based on Adaptive Patch Structure. Entropy 2018, 20, 935. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Zeng, K.; Wang, Z. Perceptual Quality Assessment for Multi-Exposure Image Fusion. IEEE Trans. Image Process. 2015, 24, 3345–3356. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ma, J.; Le, Z.; Jiang, J.; Guo, X. FusionDN: A Unified Densely Connected Network for Image Fusion. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Jiang, J.; Guo, X.; Ling, H. U2Fusion: A Unified Unsupervised Image Fusion Network. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Chen, J.; Yu, Y.; Ma, J. ACE-MEF: Adaptive Clarity Evaluation-Guided Network With Illumination Correction for Multi-Exposure Image Fusion. IEEE Trans. Multimed. 2023, 25, 8103–8118. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Xu, G.; Liu, H. End-to-End Exposure Fusion Using Convolutional Neural Network. IEICE Trans. Inf. Syst. 2018, 101, 560–563. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Cai, J.; Gu, S.; Zhang, L. Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images. IEEE Trans. Image Process. 2018, 27, 2049–2062. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, J.; Shang, X.; Zhong, W.; Liu, J. Coarse-to-fine multi-scale attention-guided network for multi-exposure image fusion. Vis. Comput. 2023, 39, 1–14. [Google Scholar] [CrossRef]
- Ma, J.; Yu, W.; Liang, P.; Li, C.; Jiang, J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf. Fusion 2019, 48, 11–26. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Le, Z.; Ma, Y. GANFuse: A novel multi-exposure image fusion method based on generative adversarial networks. Neural Comput. Appl. 2021, 33, 6133–6145. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chuang, Y.Y. Deep Exposure Fusion with Deghosting via Homography Estimation and Attention Learning. In Proceedings of the ICASSP 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1464–1468. [Google Scholar] [CrossRef]
- Qu, L.; Liu, S.; Wang, M.; Song, Z. TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework using Self-Supervised Multi-Task Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 22 February–1 March 2021. [Google Scholar] [CrossRef]
- Microsoft COCO: Common Objects in Context. Available online: https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48 (accessed on 8 August 2023).
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2016, arXiv:1511.07122. Available online: http://arxiv.org/abs/1511.07122 (accessed on 8 August 2023).
- Hamaguchi, R.; Fujita, A.; Nemoto, K.; Imaizumi, T.; Hikosaka, S. Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, S. Smoothed Dilated Convolutions for Improved Dense Prediction. In Proceedings of the Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 19–23 August 2018; pp. 2486–2495. [Google Scholar] [CrossRef]
- Zeng, K.; Ma, K.; Hassen, R.; Wang, Z. Perceptual evaluation of multi-exposure image fusion algorithms. In Proceedings of the 2014 Sixth International Workshop on Quality of Multimedia Experience (QoMEX), Singapore, 18–20 September 2014; pp. 7–12. [Google Scholar] [CrossRef]
- Merianos, I.; Mitianoudis, N. Multiple-Exposure Image Fusion for HDR Image Synthesis Using Learned Analysis Transformations. J. Imaging 2019, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, K.; Yong, H.; Zhang, L. Fast Multi-Scale Structural Patch Decomposition for Multi-Exposure Image Fusion. IEEE Trans. Image Process. 2020, 29, 5805–5816. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, L. Multi-Exposure Fusion with CNN Features. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1723–1727. [Google Scholar] [CrossRef]
- Van Aardt, J. Assessment of image fusion procedures using entropy, image quality, and multispectral classification. J. Appl. Remote Sens. 2008, 2, 023522. [Google Scholar] [CrossRef]
- Bulanon, D.; Burks, T.; Alchanatis, V. Image fusion of visible and thermal images for fruit detection. Biosyst. Eng. 2009, 103, 12–22. [Google Scholar] [CrossRef]
- Cvejic, N.; Canagarajah, C.N.; Bull, D.R. Image fusion metric based on mutual information and Tsallis entropy. Electron. Lett. 2006, 42, 626–627. [Google Scholar] [CrossRef]
- Jagalingam, P.; Hegde, A.V. A Review of Quality Metrics for Fused Image. Aquat. Procedia 2015, 4, 133–142. [Google Scholar] [CrossRef]
- Qu, G.; Zhang, D.; Yan, P. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 313. [Google Scholar] [CrossRef]
- Cui, G.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Opt. Commun. 2015, 341, 199–209. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Priya, R. Hybrid Multimodality Medical Image Fusion Technique for Feature Enhancement in Medical Diagnosis. Int. J. Eng. Sci. Invent. 2018, 2, 52–60. [Google Scholar]
- Rao, Y.J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355–375. [Google Scholar] [CrossRef]
- Eskicioglu, A.; Fisher, P. Image quality measures and their performance. IEEE Trans. Commun. 1995, 43, 2959–2965. [Google Scholar] [CrossRef]
- Xydeas, C.; Petrović, V. Objective image fusion performance measure. Electron. Lett. 2000, 36, 308. [Google Scholar] [CrossRef]
- Chen, Y.; Blum, R.S. A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 2009, 27, 1421–1432. [Google Scholar] [CrossRef]
- Chen, H.; Varshney, P.K. A human perception inspired quality metric for image fusion based on regional information. Inf. Fusion 2007, 8, 193–207. [Google Scholar] [CrossRef]
- Han, Y.; Cai, Y.; Cao, Y.; Xu, X. A new image fusion performance metric based on visual information fidelity. Inf. Fusion 2013, 14, 127–135. [Google Scholar] [CrossRef]
Metrics | SPD-MEF [17] | MFE-Opt [8] | FMMEF [37] | GD [3] | DeepFuse citedeepfuse | MEFCNN [38] | IFCNN [11] |
MEF-SSIM | 0.9382 | 0.9762 1 | 0.9324 | 0.9645 2 | 0.8968 | 0.9364 | 0.9432 |
MEF-SSIMc | 0.9271 | 0.9775 1 | 0.9403 | 0.9527 3 | 0.862 | 0.9126 | 0.9237 |
Metrics | FusionDN [20] | U2Fusion [21] | MEF-GAN [9] | MEFNet [12] | TransMEF [30] | Ref-MEF | |
MEF-SSIM | 0.924 | 0.9304 | 0.7722 | 0.9139 | 0.8972 | 0.9496 3 | |
MEF-SSIMc | 0.9123 | 0.9203 | 0.7802 | 0.9026 | 0.9032 | 0.9582 2 |
Category | Name | Meaning | +/− |
---|---|---|---|
Information theory-based | EN [39] | Entropy | + |
CE [40] | Cross entropy | − | |
TE [41] | Tsallis entropy | + | |
PSNR [42] | Peak signal-to-noise ratio | + | |
NMI [43] | Normal mutual information | + | |
Image feature-based | AG [44] | Average gradient | + |
EI [45] | Edge intensity | + | |
SD [46] | Standard deviation | + | |
SF [47] | Spatial frequency | + | |
QAB/F [48] | Gradient-based fusion performance | + | |
Human perception-inspired | QCB [49] | Chen–Blum metric | + |
QCV [50] | Chen–Varshney metric | − | |
VIF [51] | Visual information fidelity | + |
Methods | EN | CE | TE | PNSR | NMI | AG | EI | SD | SF | Q AB/F | Q CB | Q CV | VIF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPD-MEF 6 | 7.1811 | 3.234 | 17,394 | 58.5365 | 0.6984 | 5.8798 | 54.6891 | 56.7475 | 20.7963 | 0.6376 | 0.4546 | 354.9691 | 0.774 |
MFE-OPT 5 | 7.2264 | 3.2354 | 152,840 | 58.5998 | 0.5926 | 5.7986 | 58.7073 | 51.5027 | 19.5281 | 0.6898 | 0.4627 | 729.1273 | 0.6959 |
FMMEF 4 | 7.4264 | 2.9075 | 53,255 | 57.6855 | 0.4809 | 5.69 | 53.4626 | 53.508 | 18.9879 | 0.7006 | 0.4558 | 621.063 | 0.9041 |
GD 10 | 7.2257 | 3.7746 | 30,000 | 56.6983 | 0.5465 | 5.4076 | 53.4681 | 55.8072 | 17.8313 | 0.6749 | 0.4305 | 336.0762 | 0.8511 |
DeepFuse 12 | 6.8395 | 3.1395 | 93,099 | 57.9744 | 0.7403 | 3.4418 | 35.2964 | 47.8109 | 10.6415 | 0.3866 | 0.391 | 361.694 | 0.5178 |
MEFCNN 11 | 7.3061 | 2.6457 | 101,951 | 54.2667 | 0.5974 | 4.9264 | 51.0512 | 55.7865 | 17.1608 | 0.6667 | 0.4297 | 750.0043 | 0.7355 |
IFCNN 7 | 7.153 | 3.3971 | 47,282 | 55.3554 | 0.7796 | 6.1824 | 62.1918 | 51.5826 | 21.0011 | 0.5919 | 0.41 | 238.3928 | 0.7146 |
FusionDN 2 | 7.4243 | 2.9392 | 9673 | 54.9748 | 0.7383 | 6.9693 | 69.3412 | 67.7641 | 21.6542 | 0.536 | 0.4355 | 322.5755 | 0.9505 |
U2Fusion 9 | 6.6785 | 3.018 | 20,326 | 56.0697 | 0.7639 | 5.4728 | 59.3588 | 65.1615 | 18.5468 | 0.5354 | 0.4159 | 242.4821 | 0.8281 |
MEF-GAN 13 | 6.9109 | 2.773 | 21,360 | 54.857 | 0.5699 | 4.5945 | 48.5215 | 63.734 | 13.9918 | 0.2829 | 0.3822 | 618.3198 | 0.5859 |
MEFNet 3 | 7.3035 | 3.059 | 83,157 | 57.7134 | 0.6077 | 5.8818 | 62.828 | 58.5405 | 19.7768 | 0.6767 | 0.4863 | 622.814 | 0.8342 |
TransMEF 8 | 7.2123 | 3.0568 | 18,812 | 56.9614 | 0.8031 | 5.5395 | 54.5106 | 62.901 | 18.3247 | 0.5705 | 0.4197 | 281.2867 | 0.8175 |
Ref-MEF 1 | 7.4247 2 | 2.93 4 | 97,332 3 | 58.5548 2 | 0.7606 4 | 6.9852 1 | 67.9798 2 | 67.103 2 | 21.7384 1 | 0.7013 1 | 0.4474 5 | 292.275 4 | 0.8681 3 |
component | configuration1 | configuration2 | configuration3 | configuration4 | configuration5 | configuration6 |
REC | ✓ | ✓ | ✓ | ✓ | ✓ | |
EGFF | ✓ | ✓ | ✓ | ✓ | ✓ | |
Spe Conv | ✓ | ✓ | ✓ | ✓ | ✓ | |
Gated Fusion | ✓ | ✓ | ✓ | ✓ | ✓ | |
Loss with | ✓ | ✓ | ✓ | ✓ | ✓ | |
MEF-SSIM | 0.8633 | 0.8479 | 0.8555 | 0.8958 | 0.9588 | 0.9496 |
MEF-SSIMc | 0.8711 | 0.8578 | 0.8632 | 0.9039 | 0.9673 | 0.9582 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhou, S.; Xu, Y.; Chen, Y.; Cao, K. Ref-MEF: Reference-Guided Flexible Gated Image Reconstruction Network for Multi-Exposure Image Fusion. Entropy 2024, 26, 139. https://doi.org/10.3390/e26020139
Huang Y, Zhou S, Xu Y, Chen Y, Cao K. Ref-MEF: Reference-Guided Flexible Gated Image Reconstruction Network for Multi-Exposure Image Fusion. Entropy. 2024; 26(2):139. https://doi.org/10.3390/e26020139
Chicago/Turabian StyleHuang, Yuhui, Shangbo Zhou, Yufen Xu, Yijia Chen, and Kai Cao. 2024. "Ref-MEF: Reference-Guided Flexible Gated Image Reconstruction Network for Multi-Exposure Image Fusion" Entropy 26, no. 2: 139. https://doi.org/10.3390/e26020139
APA StyleHuang, Y., Zhou, S., Xu, Y., Chen, Y., & Cao, K. (2024). Ref-MEF: Reference-Guided Flexible Gated Image Reconstruction Network for Multi-Exposure Image Fusion. Entropy, 26(2), 139. https://doi.org/10.3390/e26020139