Adversarial Robustness with Partial Isometry
Abstract
:1. Introduction
2. Notations and Definitions
2.1. Notations
2.2. Adversarial Machine Learning
2.3. Geometrical Definitions
- A smooth map . We denote by the i-th component of f in the standard coordinates of .
- A point .
- A positive real number .
2.4. Robustness Condition
3. Derivation of the Regularization Method
3.1. The Partial Isometry Condition
- with J, which is a full-rank real matrix.
- with G, which is an symmetric positive definite real matrix.
- with , which is a symmetric positive-semidefinite real matrix.
3.2. Coordinate Change
3.3. The Fisher–Rao Distance
4. Experiments
4.1. Experiments on MNIST Dataset
4.1.1. Experimental Setup
4.1.2. Robustness to Adversarial Attacks
4.2. Experiments on CIFAR-10 Dataset
5. Discussion and Related Work
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proofs
References
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing properties of neural networks. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA, 22–24 May 2017; pp. 39–57. [Google Scholar]
- Gilmer, J.; Metz, L.; Faghri, F.; Schoenholz, S.S.; Raghu, M.; Wattenberg, M.; Goodfellow, I.J. Adversarial Spheres. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Li, B.; Qi, P.; Liu, B.; Di, S.; Liu, J.; Pei, J.; Yi, J.; Zhou, B. Trustworthy AI: From Principles to Practices. ACM Comput. Surv. 2022, 55, 1–46. [Google Scholar] [CrossRef]
- Croce, F.; Hein, M. Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-Free Attacks. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020. [Google Scholar]
- Papernot, N.; McDaniel, P.D.; Wu, X.; Jha, S.; Swami, A. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks. In Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA, 22–26 May 2016. [Google Scholar]
- Hoffman, J.; Roberts, D.A.; Yaida, S. Robust Learning with Jacobian Regularization. arXiv 2018, arXiv:1908.02729. [Google Scholar]
- Shen, C.; Peng, Y.; Zhang, G.; Fan, J. Defending Against Adversarial Attacks by Suppressing the Largest Eigenvalue of Fisher Information Matrix. arXiv 2019, arXiv:1909.06137. [Google Scholar]
- Amari, S.i. Differential-Geometrical Methods in Statistics; Lecture Notes in Statistics; Springer: New York, NY, USA, 1985; Volume 28. [Google Scholar]
- Calin, O.; Udrişte, C. Geometric Modeling in Probability and Statistics; Springer International Publishing: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Čencov, N. Algebraic foundation of mathematical statistics. Ser. Stat. 1978, 9, 267–276. [Google Scholar] [CrossRef]
- Amari, S.I.; Nagaoka, H. Methods of Information Geometry; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Shafahi, A.; Najibi, M.; Ghiasi, M.A.; Xu, Z.; Dickerson, J.; Studer, C.; Davis, L.S.; Taylor, G.; Goldstein, T. Adversarial training for free! In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Wong, E.; Rice, L.; Kolter, J.Z. Fast is better than free: Revisiting adversarial training. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Zhao, C.; Fletcher, P.T.; Yu, M.; Peng, Y.; Zhang, G.; Shen, C. The Adversarial Attack and Detection under the Fisher Information Metric. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Müller, R.; Kornblith, S.; Hinton, G.E. When does label smoothing help? In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Cissé, M.; Bojanowski, P.; Grave, E.; Dauphin, Y.N.; Usunier, N. Parseval Networks: Improving Robustness to Adversarial Examples. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 854–863. [Google Scholar]
- Béthune, L.; Boissin, T.; Serrurier, M.; Mamalet, F.; Friedrich, C.; González-Sanz, A. Pay Attention to Your Loss: Understanding Misconceptions about 1-Lipschitz Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022. [Google Scholar]
- Xiao, C.; Zhu, J.Y.; Li, B.; He, W.; Liu, M.; Song, D. Spatially Transformed Adversarial Examples. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Skovgaard, L.T. A Riemannian Geometry of the Multivariate Normal Model. Scand. J. Stat. 1984, 11, 211–223. [Google Scholar]
- Cohen, J.; Rosenfeld, E.; Kolter, Z. Certified Adversarial Robustness via Randomized Smoothing. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 1310–1320. [Google Scholar]
- Zhang, H.; Yu, Y.; Jiao, J.; Xing, E.; Ghaoui, L.E.; Jordan, M. Theoretically Principled Trade-off between Robustness and Accuracy. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7472–7482. [Google Scholar]
- Tsipras, D.; Santurkar, S.; Engstrom, L.; Turner, A.; Madry, A. Robustness May Be at Odds with Accuracy. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Picot, M.; Messina, F.; Boudiaf, M.; Labeau, F.; Ben Ayed, I.; Piantanida, P. Adversarial Robustness via Fisher-Rao Regularization. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2698–2710. [Google Scholar] [CrossRef] [PubMed]
- Leino, K.; Wang, Z.; Fredrikson, M. Globally-Robust Neural Networks. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021. [Google Scholar]
Defense | BASE | ISO | DIST | JAC | FIR | AT |
---|---|---|---|---|---|---|
Clean | 99.01 | 96.51 | 98.81 | 98.95 | 98.84 | 98.98 |
AA- (0.15) | 35.70 | 43.38 | 35.35 | 38.74 | 1.68 | 73.34 |
AA- (1.5) | 10.38 | 22.15 | 9.63 | 13.30 | 0.03 | 95.43 |
Defense | BASE | ISO | DIST | JAC | FIR | AT |
---|---|---|---|---|---|---|
Clean | 92.93 | 76.86 | 84.96 | 86.17 | 89.98 | 80.78 |
PGD (4/255) | 2.49 | 40.17 | 7.54 | 8.56 | 9.74 | 68.82 |
PGD (8/255) | 0.47 | 39.68 | 3.35 | 3.66 | 4.05 | 66.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi-Garrier, L.; Bouaynaya, N.C.; Delahaye, D. Adversarial Robustness with Partial Isometry. Entropy 2024, 26, 103. https://doi.org/10.3390/e26020103
Shi-Garrier L, Bouaynaya NC, Delahaye D. Adversarial Robustness with Partial Isometry. Entropy. 2024; 26(2):103. https://doi.org/10.3390/e26020103
Chicago/Turabian StyleShi-Garrier, Loïc, Nidhal Carla Bouaynaya, and Daniel Delahaye. 2024. "Adversarial Robustness with Partial Isometry" Entropy 26, no. 2: 103. https://doi.org/10.3390/e26020103
APA StyleShi-Garrier, L., Bouaynaya, N. C., & Delahaye, D. (2024). Adversarial Robustness with Partial Isometry. Entropy, 26(2), 103. https://doi.org/10.3390/e26020103