Spectrum Sensing Based on Hybrid Spectrum Handoff in Cognitive Radio Networks
Abstract
:1. Introduction
2. Literature Review
2.1. Related Works
2.2. Research Gaps
3. Component-Specific CSS Model
- 1.
- The power spectrum of PU, denoted by , is subjected to path loss attenuation [37].
- 2.
- The path loss attenuation is subjected to the total power spectrum and thus, the power spectrum model is obtained.
- 3.
- The measurement model per SU is computed based on the power spectrum of PU, path loss attenuation, and total power spectrum [38], and the model as shown in Equations (7)–(10).
- A global constraint vector associated with the frequency band in power spectra of every PU that impacts every node present in the CRN.
- In a case where diverse subsets of general constraints is considered, the observation model offered in Equation (6) is rewritten as Equation (12).
4. Component-Specific Adaptive Estimation (CSAE) for MSD Formulation
- 1.
- Consider at every node .
- 2.
- For estimating and , select combining matrices and whose components in every row are and ; fulfill if and ; fulfill , if and .
Algorithm 1: Pseudo-code for CSAE | |||||
Output: : | |||||
Input: , , , , , | |||||
Step 1: Initialization | |||||
for do | |||||
for do | |||||
and are computed as shown in Equations (29) and (30) | |||||
end | |||||
end | |||||
Step2: Iterative Part | |||||
for do | |||||
Adaptation Step for each node | |||||
for do | |||||
do | |||||
end | |||||
for do | |||||
Global: Adaptive Weight Estimation | |||||
for do | |||||
and are computed as shown in Equation (31) and Equation (32) | |||||
end | |||||
Elect only global constraint vectors from every user: | |||||
Concatenate a global set of constraints from every user | |||||
Combining step for Global | |||||
General: Adaptive Weights Estimation | |||||
for do | |||||
for do | |||||
and are computed as shown in Equations (33) and (34) | |||||
end | |||||
Elect userconcerned for subset of constraints: | |||||
Elect subset of general constraints from user in | |||||
Concatenate subset of general constraints from every user | |||||
Combining step: | |||||
end | |||||
end | |||||
end |
Algorithm 2: Pseudo code for MSD Estimation | ||
for do | ||
for do | ||
and are computed as shown in Equations (35) and (36) | ||
end | ||
end |
5. Results and Discussion
5.1. Analysis of Network MSD for the CSCSSM and the Conventional Methods with a Network of Q = 3 PUs, and K = 7 SUs, 11 SUs, 15 SUs Simulated while Fixing the σ to 0.05
5.2. Analysis of Network MSD for the CSCSSM and the Conventional Methods with a Network of Q = 3 PUs or 5 PUs and K = 7 SUs, 11 SUs, or 15 SUs Simulated while Fixing the σ to 0.1
5.3. Analysis of Network MSD for the CSCSSM and the Conventional Methods with a Network of Q = 3 PUs or 5 PUs and K = 7 SUs, 11 SUs, or 15 SUs Simulated While Fixing the σ to 0.2
5.4. MSD Error Analysis of CSCSSM and Conventional Methods with a Network of Q = 3 PUs or 5 PUs and K = 7 SUs, 11 SUs, or 15 SUs Simulated by Varying the α
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Description |
ACSS | Attack Aware CSS |
ANN | Artificial Neural Network |
ATC | Adapt Then Combine |
CBCSS | Cluster−Based CSS |
CH | Cluster Head |
CR | Cognitive Radio |
CRN | Cognitive Radio Networks |
CSAE | Component−Specific Adaptive Estimation |
CSCSSM | Component−Specific CSS Model |
CSMA | Carrier Sense Multiple Access |
CSS | Cooperative Spectrum Sensing |
CSAE | Component−Specific Adaptive Estimation |
CSMA | Carrier Sense Multiple Access |
ED | Energy Detector |
EE | Energy Efficiency |
FA | False Alarm |
HD | Hybrid Detector |
MAC | Media Access Control |
MD | Matched Detector |
MRC | Multiple Reporting Channel |
ORS | Optimal Relay Selection |
PBTSDM | Priority−Based Two−Stage Detection Model |
PU | Primary User |
QoS | Quality of Service |
RACRN | Random Access CRN |
RF | Radio Frequency |
SD | Standard Deviation |
SE | Spectral Efficiency |
Spec BPSO | Spectrum Binary Particle Swarm Optimization |
SNR | Signal−to−Noise Ratio |
SS | Spectrum Sensing |
SU | Secondary User |
WRAN | Wireless Regional Area Network |
References
- Nkalango, S.D.A.; Zhao, H.; Song, Y.; Zhang, T. Energy efficiency under double deck relay assistance on cluster cooperative spectrum sensing in hybrid spectrum sharing. IEEE Access 2020, 8, 41298–41308. [Google Scholar] [CrossRef]
- Goudos, S.K.; Siakavara, K.; Sahalos, J.N. Novel spiral antenna design using artificial bee colony optimization for UHF RFID Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 528–531. [Google Scholar] [CrossRef]
- Eappen, G.; Shankar, T.; Nilavalan, R. Cooperative relay spectrum sensing for cognitive radio network: Mutated MWOA-SNN approach. Appl. Soft. Comput. 2022, 114, 108072. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.P. Sensing coverage-based cooperative spectrum detection in cognitive radio networks. IEEE Sens. J. 2019, 19, 5325–5332. [Google Scholar] [CrossRef]
- Goudos, S.K.; Tsiflikiotis, A.; Babas, D.; Siakavara, K.; Kalialakis, C.; Karagiannidis, G.K. Evolutionary Design of a Dual Band E-Shaped Patch ANTENNA for 5G Mobile Communications. In Proceedings of the 6th International Conference on Modern Circuits and Systems Technologies, MOCAST 2017, Thessaloniki, Greece, 4–6 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Nasser, A.; Hassan, H.A.H.; Chaaya, J.A.; Mansour, A.; Yao, K.-C. Spectrum Sensing for Cognitive Radio: Recent Advances and Future Challenge. Sensors 2021, 21, 2408. [Google Scholar] [CrossRef]
- Patel, A.; Ram, H.; Jagannatham, A.K.; Varshney, P.K. Robust cooperative spectrum sensing for MIMO cognitive radio networks under CSI uncertainty. IEEE Trans. Signal Process. 2018, 66, 18–33. [Google Scholar] [CrossRef]
- Goudos, S.K.; Tsoulos, G.V.; Athanasiadou, G.; Batistatos, M.C.; Zarbouti, D.; Psannis, K.E. Artificial neural network optimal modeling and optimization of UAV measurements for mobile communications using the L-SHADE algorithm. IEEE Trans. Antennas Propag. 2019, 67, 4022–4031. [Google Scholar] [CrossRef]
- Feng, J.; Li, S.; Lv, S.; Wang, H.; Fu, A. Securing cooperative spectrum sensing against collusive false feedback attack in cognitive radio networks. IEEE Trans. Veh. Technol. 2018, 67, 8276–8287. [Google Scholar] [CrossRef]
- Bagheri, A.; Ebrahimzadeh, A. Statistical analysis of lifetime in wireless cognitive sensor network for multi-channel cooperative spectrum sensing. IEEE Sens. J. 2021, 21, 2412–2421. [Google Scholar] [CrossRef]
- Gao, A.; Du, C.; Ng, S.X.; Liang, W. A cooperative spectrum sensing with multi-agent reinforcement learning approach in cognitive radio networks. IEEE Commun. Lett. 2021, 25, 2604–2608. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Z.; Yuan, L.; Zhou, F.; Lang, F.; Wang, B.; Wu, Q. IRS-enhanced energy detection for spectrum sensing in cognitive radio networks. IEEE Wirel. Commun. Lett. 2021, 10, 2254–2258. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Samant, A.; Yadav, S.K. Spectrum sensing in cognitive radio networks and metacognition for dynamic spectrum sharing between radar and communication system: A review. Phys. Commun. 2022, 52, 101673. [Google Scholar] [CrossRef]
- Goudos, S.K.; Diamantoulakis, P.D.; Karagiannidis, G.K. Multi-objective optimization in 5G wireless networks with massive MIMO. IEEE Commun. Lett. 2018, 22, 2346–2349. [Google Scholar] [CrossRef]
- Kumar, A.; Pandit, S.; Singh, G. Threshold selection analysis of spectrum sensing for cognitive radio network with censoring based imperfect reporting channels. Wirel. Netw. 2021, 27, 961–980. [Google Scholar] [CrossRef]
- Jin, Z.; Yao, K.; Lee, B.; Cho, J.; Zhang, L. Channel status learning for cooperative spectrum sensing in energy-restricted cognitive radio networks. IEEE Access 2019, 7, 64946–64954. [Google Scholar] [CrossRef]
- Alhamad, R.; Wang, H.; Yao, Y.-D. Cooperative spectrum sensing with random access reporting channels in cognitive radio networks. IEEE Trans. Veh. Technol. 2017, 66, 7249–7261. [Google Scholar] [CrossRef]
- Reddy, S.S.; Prasad, M.S.G. Improved Whale Optimization Algorithm and Convolutional neural network based Cooperative Spectrum Sensing in Cognitive Radio Networks. Inf. Secur. J. Glob. Perspect. 2020, 30, 160–172. [Google Scholar] [CrossRef]
- Olawole, A.A.; Takawira, F.; Oyerinde, O.O. Cooperative spectrum sensing in multichannel cognitive radio networks with energy harvesting. IEEE Access 2019, 7, 84784–84802. [Google Scholar] [CrossRef]
- Shen, F.; Ding, G.; Wang, Z.; Wu, Q. UAV-Based 3D Spectrum Sensing in Spectrum-Heterogeneous Networks. IEEE Trans. Veh. Technol. 2019, 68, 5711–5722. [Google Scholar] [CrossRef]
- Thareja, Y.; Sharma, K.K. A posterior transition probability-based model for spectrum sensing in cognitive radio networks for maximized network lifetime and performance enhancement. Int. J. Commun. Syst. 2021, 34, e4758. [Google Scholar] [CrossRef]
- Chatterjee, S.; Maity, S.P.; Acharya, T. Energy-spectrum efficiency trade-off in energy harvesting cooperative cognitive radio networks. IEEE Trans. Cognit. Commun. Netw. 2019, 5, 295–303. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Lo, B.F.; Balakrishnan, R. Cooperative spectrum sensing in cognitive radio networks: A survey. Phys. Commun. 2011, 4, 40–62. [Google Scholar] [CrossRef]
- Muthukkumar, R.; Manimegalai, D. Enhancing cooperative spectrum sensing in cognitive radio ad hoc networks using priority-based two-stage detection model. Wirel. Netw. 2018, 24, 3295–3307. [Google Scholar] [CrossRef]
- Atmaca, S.; Şayli, Ö.; Yuan, J.; Kavak, A. Throughput maximization of CSMA in cognitive radio networks with cooperative spectrum sensing. Wirel. Pers. Commun. 2017, 92, 1473–1492. [Google Scholar] [CrossRef]
- Sharifi, A.A. Attack-aware defense strategy: A robust cooperative spectrum sensing in cognitive radio sensor networks. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 133–140. [Google Scholar] [CrossRef]
- Ye, H.; Jiang, J. Optimal linear weighted cooperative spectrum sensing for clustered-based cognitive radio networks. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 84. [Google Scholar] [CrossRef]
- Devi, M.K.; Umamaheswari, K. Optimization techniques for spectrum handoff in cognitive radio networks using cluster based cooperative spectrum sensing. Wirel. Netw. 2021, 27, 2173–2192. [Google Scholar] [CrossRef]
- Rajaganapathi, R.; Nathan, P.M. ORS-ACSS: Optimum relay selection and accurate cooperative spectrum sensing for hybrid cognitive radio networks. Wirel. Pers. Commun. 2020, 110, 795–813. [Google Scholar] [CrossRef]
- Hossain, M.A.; Schukat, M.; Barrett, E. Enhancing the spectrum sensing performance of cluster-based cooperative cognitive radio networks via sequential multiple reporting channels. Wirel. Pers. Commun. 2021, 116, 2411–2433. [Google Scholar] [CrossRef]
- Jaglan, R.R.; Mustafa, R.; Agrawal, S. Scalable and robust ANN based cooperative spectrum sensing for cognitive radio networks. Wirel. Pers. Commun. 2018, 99, 1141–1157. [Google Scholar] [CrossRef]
- Arshid, K.; Jianbiao, Z.; Hussain, I.; Pathan, M.S.; Yaqub, M.; Jawad, A.; Munir, R.; Ahmad, F. Energy efficiency in cognitive radio network using cooperative spectrum sensing based on hybrid spectrum handoff. Egypt Inf. J. 2022, 23, 77–88. [Google Scholar] [CrossRef]
- Bani, K.; Kulkarni, V. Hybrid spectrum sensing using MD and ED for cognitive radio networks. J. Sens. Actuat. Netw. 2022, 11, 36. [Google Scholar] [CrossRef]
- Plata-Chaves, J.; Bogdanović, N.; Berberidis, K. Distributed diffusion-based LMS for node-specific adaptive parameter estimation. IEEE Trans. Signal Process. 2015, 63, 3448–3460. [Google Scholar] [CrossRef]
- Trigka, M.; Dritsas, E. An efficient distributed approach for cooperative spectrum sensing in varying interests cognitive radio networks. Sensors 2022, 22, 6692. [Google Scholar] [CrossRef] [PubMed]
- Boulogeorgos, A.A.A.; Salameh, H.A.B.; Karagiannidis, G.K. Spectrum sensing in full-duplex cognitive radio networks under hardware imperfections. IEEE Trans. Veh. Technol. 2017, 66, 2072–2084. [Google Scholar] [CrossRef]
- Chavarro-Barrera, L.; Perez-Londono, S.; Mora-Florez, J. An Adaptive Approach for Dynamic Load Modeling in Microgrids. IEEE Trans. Smart Grid 2021, 12, 2834–2843. [Google Scholar] [CrossRef]
- Zaeemzadeh, A.; Joneidi, M.; Rahnavard, N.; Qi, G.-J. Co-SpOT: Cooperative spectrum opportunity detection using Bayesian clustering in spectrum-heterogeneous cognitive radio networks. IEEE Trans. Cognit. Commun. Netw. 2018, 4, 206–219. [Google Scholar] [CrossRef]
- Saifan, R.; Jafar, I.; Al Sukkar, G. Optimized cooperative spectrum sensing algorithms in cognitive radio networks. Comput. J. 2017, 60, 835–849. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, K.; Chi, K.; Zhu, Y.-H. Cooperative Spectrum Sensing Optimization in Energy-Harvesting Cognitive Radio Networks. IEEE Trans. Wirel. Commun. 2020, 19, 7663–7676. [Google Scholar] [CrossRef]
- Goudos, S.K. A versatile software tool for microwave planar radar absorbing materials design using global optimization algorithms. Mater. Des. 2007, 28, 2585–2595. [Google Scholar] [CrossRef]
Q = 3 PUs and K = 7 SUs | |||||
α | PBTSDM | ORS-ACSS | ATC Adaptive Weights | ATC | CSCSSM |
0.1 | −5 | −7 | −8 | −9 | −10 |
0.2 | −6 | −9 | −10 | −11 | −13 |
0.3 | −7 | −10 | −12 | −13 | −16 |
0.4 | −8 | −11 | −14 | −15 | −17 |
0.5 | −9 | −13 | −16 | −17 | −19 |
0.6 | −10 | −14 | −19 | −20 | −21 |
0.7 | −11 | −15 | −20 | −21 | −22 |
0.8 | −12 | −17 | −21 | −22 | −24 |
0.9 | −13 | −18 | −22 | −23 | −25 |
1 | −14 | −19 | −23 | −24 | −27 |
Q = 3 PUs and K = 11 SUs | |||||
α | PBTSDM | ORS-ACSS | ATC Adaptive Weights | ATC | CSCSSM |
0.1 | −4 | −6 | −7 | −8 | −10 |
0.2 | −5 | −8 | −10 | −9 | −11 |
0.3 | −6 | −9 | −11 | −12 | −14 |
0.4 | −7 | −10 | −13 | −15 | −17 |
0.5 | −8 | −11 | −15 | −18 | −20 |
0.6 | −9 | −13 | −17 | −21 | −23 |
0.7 | −10 | −16 | −19 | −23 | −25 |
0.8 | −11 | −19 | −22 | −24 | −26 |
0.9 | −13 | −21 | −24 | −25 | −27 |
1 | −15 | −23 | −26 | −26 | −28 |
Q = 3 PUs and K = 15 SUs | |||||
α | PBTSDM | ORS-ACSS | ATC Adaptive Weights | ATC | CSCSSM |
0.1 | −4 | −5 | −7 | −8 | −9 |
0.2 | −6 | −7 | −8 | −9 | −13 |
0.3 | −7 | −8 | −10 | −12 | −15 |
0.4 | −8 | −9 | −13 | −15 | −18 |
0.5 | −9 | −12 | −15 | −18 | −20 |
0.6 | −10 | −15 | −17 | −21 | −23 |
0.7 | −12 | −18 | −19 | −23 | −25 |
0.8 | −14 | −21 | −23 | −26 | −27 |
0.9 | −16 | −24 | −25 | −27 | −29 |
1 | −18 | −27 | −28 | −29 | −30 |
Q = 5 PUs and K = 7 SUs | |||||
α | PBTSDM | ORS-ACSS | ATC Adaptive Weights | ATC | CSCSSM |
0.1 | 0.1 | −5 | −6 | −8 | −10 |
0.2 | 0.2 | −6 | −7 | −11 | −12 |
0.3 | 0.3 | −7 | −8 | −12 | −13 |
0.4 | 0.4 | −8 | −9 | −13 | −14 |
0.5 | 0.5 | −9 | −10 | −14 | −15 |
0.6 | 0.6 | −10 | −11 | −15 | −18 |
0.7 | 0.7 | −11 | −13 | −18 | −20 |
0.8 | 0.8 | −13 | −17 | −20 | −23 |
0.9 | 0.9 | −15 | −19 | −23 | −25 |
1 | 1 | −17 | −20 | −25 | −28 |
Q = 5 PUs and K = 11 SUs | |||||
α | PBTSDM | ORS-ACSS | ATC Adaptive Weights | ATC | CSCSSM |
0.1 | −6 | −7 | −8 | −9 | −10 |
0.2 | −7 | −8 | −9 | −10 | −12 |
0.3 | −8 | −9 | −10 | −11 | −13 |
0.4 | −9 | −10 | −13 | −14 | −17 |
0.5 | −10 | −11 | −15 | −17 | −19 |
0.6 | −11 | −13 | −17 | −20 | −21 |
0.7 | −13 | −15 | −19 | −22 | −24 |
0.8 | −15 | −17 | −23 | −25 | −26 |
0.9 | −17 | −20 | −25 | −27 | −28 |
1 | −19 | −25 | −28 | −29 | −31 |
Q = 5 PUs and K = 15 SUs | |||||
α | PBTSDM | ORS-ACSS | ATC Adaptive Weights | ATC | CSCSSM |
0.1 | −4 | −5 | −6 | −7 | −8 |
0.2 | −6 | −7 | −8 | −9 | −10 |
0.3 | −7 | −8 | −9 | −11 | −13 |
0.4 | −8 | −9 | −10 | −13 | −15 |
0.5 | −9 | −10 | −13 | −15 | −17 |
0.6 | −10 | −13 | −15 | −17 | −19 |
0.7 | −11 | −15 | −18 | −20 | −23 |
0.8 | −12 | −18 | −21 | −22 | −26 |
0.9 | −16 | −19 | −23 | −24 | −27 |
1 | −18 | −21 | −25 | −27 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaduganathan, L.; Neware, S.; Falkowski-Gilski, P.; Divakarachari, P.B. Spectrum Sensing Based on Hybrid Spectrum Handoff in Cognitive Radio Networks. Entropy 2023, 25, 1285. https://doi.org/10.3390/e25091285
Vaduganathan L, Neware S, Falkowski-Gilski P, Divakarachari PB. Spectrum Sensing Based on Hybrid Spectrum Handoff in Cognitive Radio Networks. Entropy. 2023; 25(9):1285. https://doi.org/10.3390/e25091285
Chicago/Turabian StyleVaduganathan, Lakshminarayanan, Shubhangi Neware, Przemysław Falkowski-Gilski, and Parameshachari Bidare Divakarachari. 2023. "Spectrum Sensing Based on Hybrid Spectrum Handoff in Cognitive Radio Networks" Entropy 25, no. 9: 1285. https://doi.org/10.3390/e25091285
APA StyleVaduganathan, L., Neware, S., Falkowski-Gilski, P., & Divakarachari, P. B. (2023). Spectrum Sensing Based on Hybrid Spectrum Handoff in Cognitive Radio Networks. Entropy, 25(9), 1285. https://doi.org/10.3390/e25091285