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Abstract: The rapid advancement of wireless communication combined with insufficient spectrum
exploitation opens the door for the expansion of novel wireless services. Cognitive radio network
(CRN) technology makes it possible to periodically access the open spectrum bands, which in turn
improves the effectiveness of CRNs. Spectrum sensing (SS), which allows unauthorized users to
locate open spectrum bands, plays a fundamental part in CRNs. A precise approximation of the
power spectrum is essential to accomplish this. On the assumption that each SU’s parameter vector
contains some globally and partially shared parameters, spectrum sensing is viewed as a parameter
estimation issue. Distributed and cooperative spectrum sensing (CSS) is a key component of this
concept. This work introduces a new component-specific cooperative spectrum sensing model
(CSCSSM) in CRNs considering the amplitude and phase components of the input signal including
Component Specific Adaptive Estimation (CSAE) for mean squared deviation (MSD) formulation.
The proposed concept ensures minimum information loss compared to the traditional methods that
consider error calculation among the direct signal vectors. The experimental results and performance
analysis prove the robustness and efficiency of the proposed work over the traditional methods.

Keywords: cognitive radio networks; component-specific adaptive estimation; primary users; power
spectrum; spectrum sensing

1. Introduction

The phrase “Spectrum Handoff” or “Spectrum Handover” refers to the procedure used
in the cognitive radio (CR) network for users to change spectrum bands. A transceiver can
intelligently determine which communication channels are in use and which ones are not
in CR, a form of wireless communication [1]. The transceiver then immediately switches
to open channels, avoiding busy ones [2]. Moreover, it increases spectrum efficiency and
the consumer’s quality of service (QoS) through avoiding occupied channels. With the
explosive expansion of wireless communication industries [3], a significant demand exists
for establishment of novel wireless networks in licensed and unlicensed frequency spectra.
Recent research demonstrates that the current fixed spectral assignment approach leads to
subpar spectrum utilization [4–6]. Cognitive radio networks (CRNs) have emerged as a
viable technique to solve this issue by allowing access to the sporadic intervals of vacant
frequency bands, often known as white space or spectrum gaps, and therefore improving
spectrum efficiency (SE) [7–9]. In the most basic sense, every CR user in a CRN must first
determine if licensed users, also known as primary users (PUs), are present and if not,
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whether the spectrum is accessible. Spectrum sensing (SS) is a kind of radio frequency (RF)
environment sensing that is typically used to accomplish this [10–12].

SS has two goals: first, CR users must get out of interfering negatively with PUs
by moving to an open band to a reasonable level [13–15]. Second, to attain the essen-
tial throughput and QoS, CR users should effectively locate and utilize the spectrum
gaps [16–18]. Therefore, the effectiveness of primary and cognitive radio networks de-
pends on the detection accuracy in SS [19,20].

The performance of detection could be determined primarily depending upon two
metrics: false alarm (FA) probability indicates the probability of a CR user stating that a PU
is available while the spectra are free, and detection probability indicates the probability
of CR user portraying that a PU is available while the spectra are indeed engaged by a
PU [21]. As a detection miss leads to intervention with PUs and a FA would lessen the
SE, it is typically necessary for optimum detection performance where the probability of
detection is increasingly subjected to an FA probability [22]. The performance of detection
in SS may be considerably hampered by a variety of issues, including receiver uncertainty,
shadowing, and multipath fading [23].

The main contributions of this study is as follows.
This study proposed a component-specific cooperative spectrum sensing model (CSC-

SSM) which considers the amplitude and phase components of the input signal to decrease
the information loss in CRNs.

The component-specific adaptive estimation (CSAE) is proposed for calculating the
mean squared deviation (MSD).

This paper is structured as follows: Section 2 describes the existing component-specific
cooperative spectrum sensing (CSS) models. Section 3 explains the proposed CSAE. The
component-specific adaptive estimation (CSAE) for MSD formulation is described in Sec-
tion 4, whereas Section 5 presents the results. Finally, Section 6 provides the conclusion of
this paper.

2. Literature Review
2.1. Related Works

In 2018, Muthukkumar and Manimegalai [24] examined the collaboration between
secondary users (SUs) and main users using the Priority-Based Two-Stage Detection Model
(PBTSDM). SUs in distributed CSS continually sensed among themselves and used an
entropy-based energy detection approach to jointly determine whether or not PUs were
present. The outcomes displayed that applying the suggested technique considerably im-
proved the accuracy of energy efficiency (EE) and sensing time. However, noise uncertainty
was a concern.

In 2017, Atmaca et al. [25] used cooperative spectrum sensing to maximize the through-
put of Carrier Sense Multiple Access (CSMA) in Random Access CRNs (RACRNs). A CRN
was simulated using the CSMA media access control (MAC) system in this study, with a par-
ticular emphasis on examining its throughput performance. In the identical network-level
condition, throughput performances of CRNs were achieved and compared. Nevertheless,
the network load needed to be concentrated more.

In 2019, Sharifi [26] offered an effective protection strategy using the Attack Aware
CSS (ACSS). The concept was based on the assessment of attack strength, where attack
population and assault strength were correlated. The chance that a particular sensor was
malicious is equal to the ratio of malevolent sensors to all sensors, which was known as the
attack strength. The suggested method predicted attack strength and used the Bayesian
hypothesis test to enhance collaborative sensing performance, supposing malicious sensor
activity or an attack plan. However, strong interference might affect PUs.

In 2021, Ye and Jiang [27] proposed a study on cluster-based CRNs that included an
ideal linear-scaled CSS. Different weight values for cooperative nodes were assigned in this
system depending on the signal-to-noise ratio (SNR) of CR users and the historic sensing
accuracy. Additionally, the CR users could be grouped, and the cluster heads chosen to
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collect the local sensing data were the users with superior channel characteristics. The
suggested approach provided superior sensing performance while also increasing detection
probability and lowering error probability, according to the simulation findings. More
experimental platforms need to be considered to confirm the feasibility of this approach.

In 2021, Devi and Umamaheswari [28] included the use of the M/G/1 queuing model
and the Spectrum Binary Particle Swarm Optimization (Spec BPSO) algorithm for the
prediction of an efficient spectrum handoff method. Cluster-based CSS (CBCSS) was
employed to increase SU effectiveness and decrease channel congestion. This research
project also provided a framework for observing how main user behavior affected spectrum
handoff performance delays with potential CRN interruptions. Nevertheless, metaheuristic
schemes were not focused on.

In 2020, Rajaganapathi and Nathan [29] developed the accurate CSS and optimal relay
selection (ORS) system, which enhanced the SUs using a hybrid CRN throughput. The
precision of choosing the underlay/overlay technique to convey information was increased
by an accurate CSS approach. When an underlying transmission strategy is chosen, SUs
employ relays to reduce interference. An optimal relay selection approach was applied in
this case to optimize relay choice. The throughput was improved by the suggested system,
according to the numerical data. In the future, optimization concepts can be included to
ensure more enhanced results.

To effectively use the report time slot by increasing the detecting time of SUs, in
2021, Hossain et al. [30] suggested the idea of Multiple Reporting Channels (MRCs) for
clustered CRNs. In this method, each cluster was given a reporting channel for reporting
purposes. The designated single reporting channel was used by all the SUs in every cluster
to progressively transmit their sensing findings to the associated CH, extending the SUs’
sensing time length. This method considerably improved all SUs’ sensing times compared
to non-sequential reporting and also reduced all cluster heads’ (CHs’) reporting time delays
compared to sequential single-channel reporting. Multiple PUs as well as ML concepts
were not taken into account.

In 2018, Jaglan et al. [31] deployed Artificial Neural Networks (ANNs) at fusion
centers, which resulted in a notable improvement in detection accuracy and a decrease in
the FA rate when compared to traditional methods. It was determined that the suggested
ANN technique can handle CRN scalability while maintaining performance. Additionally,
the SNR of each SU was taken into account while making decisions at the fusion center.
Furthermore, the suggested method was evaluated for resilience against security attacks
(malicious users) and unintentional mistakes happening at SUs. A minimal amount of FA
issues occurred.

In 2022, Arshid et al. [32] deployed a user transmission system that senses available
channels through cooperative spectrum sensing. Energy economy was achieved by optimiz-
ing the energy consumption of the sensing process. For spectrum managing, a threshold
method based on main user traffic patterns was presented. A CSS was also explained and
executed to find the best channel with the highest throughput and least amount of energy
use. The suggested method improved throughput and energy efficiency while maintaining
the handoff delay, and preventing false alarms and missed detection.

In 2022, Bani and Kulkarni [33] deployed a hybrid detector (HD) to identify spectrum
holes using the available resources. An energy detector (ED) and matched detector (MD)
served as the foundation for the HD architecture. The HD was able to sense the signal more
accurately than a single detector like an ED. Whether or not the primary user information
was accessible in this case, HD functioned under both circumstances. Under heterogeneous
conditions, HD was analyzed both with and without spectrum sensing. The IEEE Wireless
Regional Area Network (WRAN) 802.22 standard served as the foundation for the HD’s
design specifications. OR rules produced the best outcomes for the HD model.
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2.2. Research Gaps

Users of CR pooled their sensory data through cooperation in order to make judge-
ments that were more accurate when combined than when taken separately. Due to
multipath fading and shadowing, the SNR of the received primary signal was very low,
making the identification difficult. Since receiver sensitivity is the ability to sense weak
signals, the receiver was subjected to strict sensitivity criteria, which greatly increased the
implementation complexity and hardware cost.

More crucially, while the SNR of the PU signal was below what is known as an SNR
wall, the detecting performance could not be increased by raising the sensitivity. Fortu-
nately, CSS significantly decreased the sensitivity required and the hardware restriction
difficulties. CSS was used to alleviate multipath fading- and shadowing-related perfor-
mance loss without raising the cost of CR device installation. The cooperative advantage,
however, extended beyond enhanced detection performance and loosened sensitivity
requirements [34].

As was previously said, cooperative sensing led to cooperative gain, but there were
a variety of conditions that restricted this benefit. For instance, their observations were
coupled when CR users were stopped by the same obstruction and were under spatially
correlated shadowing. Cooperation amongst more spatially connected CR users func-
tioned as well for detection. This brought up the question of user selection in cooperative
sensing [35].

The influence of nearby SUs’ behavior on an SU was not taken into consideration in
the conventional spectrum handoff method; additionally, the spectrum handoff condition
in a single field was only carried out in CRNs [36] and the hybrid spectrum access setup
merging interweave mode by underlay/m-mode which was not discussed here. Thus, a
paradigm is suggested to address the inadequacies of the aforementioned existing spectrum
handoff methodologies.

3. Component-Specific CSS Model

Spectrum handoff is regarded as the primary problem in spectrum mobility when a PU
appears and SUs use this specific PU as a licensed channel. Spectrum handoff is an essential
part of CRNs that enables resilient service for secondary consumers and is designed to
assist secondary users in locating suitable target channels to carry out communication. The
proposed CSCSSM model manages transmission power and chooses the channels with the
longest holding time to avoid the spectrum handoff.

Assume P to be PUs and S to be SUs. The power spectrum discharged by every PU is
captured as a linear grouping of certain basic operations. Now, Gaussian is used as a base
operation. Every SU, through SS, effectively identifies the entire spectrum from every PU
region. The power spectrum from PU p is modeled in Equation (1).

Kp =
A
∑

m=1
apmgm

(
ejω)

= gωvp, p = 1, 2.....P
(1)

In Equation (1), A refers to the number of CRs present in the network; Kp refers to the

summation of signals received at each CH; gm
(
ejω) = e

− (ω−ωm)

2σ2
m and constraints ωm, σm refer

to the central frequency and standard deviation; gω =
[
g1
(
ejω), g2

(
ejω), g3

(
ejω) . . . gA

(
ejω) ]

refers to a vector with base operations; scalars
{

apm
}

refer to coefficients of the base
extension for user p; and vp =

[
ap1 , ap2 . . . , apA

]
refers to a vector with aspects involved in

the linear grouping of the base operations. Equation (1) can estimate the necessary part of
the power spectra if A is adequate.
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The power spectra from SU s is identified through PU p which is attenuated owing to
transmission path loss implied by qps. The path loss coefficient is identified and described
earlier in a training phase among PUs by every SU. Training is typically repetitive at certain
periods since the coefficients vary (gradually) in time, owing to the movement of the
node. If the broadcasted spectrum moves from PU to SU, the previous power spectra are
evaluated by the receiver of the SU s, denoted as qpsKp

(
ejω). Therefore, the entire power

spectra from every PU at SU s are modeled as in Equation (2).

Kt
s =

P
∑

p=1
qpsKp

(
ejω)+ σ2

s

=
P
∑

p=1
qpsgωvp + σ2

s

= vs,ωvo
s + σ2

s

(2)

In Equation (2), vo
s =

[
vT

1 , vT
2 . . . vT

P
]T

(P.A× 1) and vs,ω = qsP ⊗ gω(1× P.A) and
σ2

s is the receiver noise. Observe that vT
p implies that

{
apm
}

k is included in the power
spectra composition of PU p; therefore, vo

s concatenates the
{

apm
}

k of every PU p. At every
time period i, s notices the received power spectra in a discrete frequency {ωr} in a period
[0, π] under the size and noise us,r by mean zero and covariance matrix Cus of size O×O
as shown in Equations (3)–(6).

bs,r(i) = vs,ωr vo
s + σ2

s + us,r, r = 1, 2....O (3)

bs,i =


bs,1(i)− σ2

s
bs,2(i)− σ2

s
...

bs,O−1(i)− σ2
s

bs,O(i)− σ2
s

, us,i =


us,1(i)
us,2(i)

...
bs,O−1(i)

bs,O(i)

 (4)

Vs,i =


vs,ω1

vs,ω2
...

vs,ωo−1

vs,ωo

 =


qs,i ⊗ gω1

qs,i ⊗ gω2
...

qs,i ⊗ gωo−1

qs,i ⊗ gωo

 (5)

bs,i = Vs,iv
o
s + us,i (6)

In Equation (6), us refers to model noise and/or measurement with mean zero and
Cus of size O×O. At O diverse frequencies, the measurements are taken and therefore, the
matrix has O rows. Consequently, in Equation (6), a linear model is attained for computing
constraints significance in vo

s . The steps for processing are described below.

1. The power spectrum of PU, denoted by p, is subjected to path loss attenuation [37].
2. The path loss attenuation is subjected to the total power spectrum and thus, the power

spectrum model is obtained.
3. The measurement model per SU s is computed based on the power spectrum of PU,

path loss attenuation, and total power spectrum [38], and the model as shown in
Equations (7)–(10).

bs,r(i) = vs,ωr vo
s + σ2

s + us,r(i) r = 1, 2......O (7)

bs,r(i)− σ2
s = vs,ωr vo

s + us,r(i) r = 1, 2......O (8)
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bs,i = Vs,iv
o
s + us,i (9)

The factor for path loss is modeled as in Equation (10).

qps,i =

( bps,i

bo

)−n

(10)

In Equation (10), bps,i refers to the Euclidean distance from s to p at i; bo refers to
a reference distance that is bo = 1; and n designs [39] the attenuation surroundings in
CRN [40]. Therefore, the values for path loss among SU s and P PUs are modeled as in
Equation (11).

qs,i = [q1s,i, q2s,i....qPs,i] (11)

In the assessment of qs,i, a relevant Gaussian noise of mean zero and SD σq is consid-
ered; accordingly, q̂s,i = qs,i + ns. If SU s changes, qs varies its distance from PUs which
also varies accordingly.

For estimating the spectrum, it is adequate to approximate the constraint vector, which
factorizes the base operations. Depending upon the network data {bs,i, Vs,i}, the issues
are treated as an assessment of numerous benefits, and assistance is presumed among the
nodes for processing information in a dispersed manner as per the Adapt Then Combine
(ATC) policy. The aforesaid policy estimates the centralized outcomes if every node desires
to approximate a similar vector of constraints.

Every vector {vo
s}

S
s=1 includes constraints which are important for the entire model’s

constraints of mutual importance to node subset together with other nodes s, and con-
straints of local importance for node s. In particular, subsets of constraints in vo

s
account or:

• A global constraint vector associated with the frequency band in power spectra of
every PU that impacts every node present in the CRN.

• In a case where J diverse subsets of general constraints is considered, the observation
model offered in Equation (6) is rewritten as Equation (12).

bs,i = Vs f ,iv
o
f + ∑

j∈Is

Vscj ,i
ζo

s,j + us,i (12)

Conventionally, every node tries to resolve by using the subsequent optimization
issue [41] as shown in Equation (13).

arg min
S

∑
s=1

E


∥∥∥∥∥bs,i −Vs f ,iv f − ∑

j∈Is

Vscj ,i
ζs,j

∥∥∥∥∥
2
 (13)

As per the concept, the amplitude and phase components are considered separately
and the optimization issue is defined as shown in Equations (14)–(16) based upon v f and
ζ1, ζ2, . . ., ζ J in which, Is refers to a well-organized set of index j related with vector ζ j,
which is of interest to node s; Vs f and Vscj

refer to matrices of sizes O×M f and O×Mcj ,
respectively, and includes columns of Vs,i related with v f and ζs,j.

arg min
S

∑
s=1

E
{Zα(d), Bβ(d)

2

}
(14)

Zα(d) = 1− tanh

[
20
α

log10

(
|X(d)|
|Y(d)| e

j(bs,i−Vs f ,iv f− ∑
j∈Is

Vscj ,iζs,j)
)]

(15)
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Bβ(d) = 1− tanh

 bs,i −Vs f ,iv f − ∑
j∈Is

Vscj ,i
ζs,j

2πα

 (16)

4. Component-Specific Adaptive Estimation (CSAE) for MSD Formulation

Here, the diffusion technique ATC which includes an adaptation and a combination
phase is exploited. The key phases of the ATC method are as follows:

1. Consider φ
(o)
s,v f

,
{

φ
(o)
s,ζ j

}
j∈Is

at every node s ∈ {1, 2 . . . S}.

2. For estimating vo
f and ζo

j , select O×O combining matrices Rv and Rζ j whose com-

ponents in every row s are
{

h
v f
s,l

}S

l=1
and

{
h

ζ j
s,l

}S

l=1
; fulfill h

v f
s,l = 0 if l /∈ λs and

∑l /∈λs h
v f
s,l = 1; fulfill h

ζ j
s,l = 0, if l /∈ λs ∩ Γj and ∑l /∈λs∩Γj

h
ζ j
s,l = 1.

The adaptation stage and combination stage at ith iteration is shown in Equations (17)
and (18), respectively.[

ψ
(i)
s

ζ
(i)
s

]
=

 ϕ
(i−1)
s,v f

ϕ
(i−1)
s,ζ

+ µsVH
s,i

bs,i −Vs,i

 ϕ
(i−1)
s,v f

ϕ
(i−1)
s,ζ

 (17)

ϕi
s,v f

= ∑
l /∈λs

h
v f
s,l ψ

(i)
l , ϕ

(i)
s,ζ j

= ∑
l /∈λs∩Γj

h
ζ j
s,lζ

(i)
l,j (18)

For every j ∈ Is, ζ
(i)
s = col

{{
ζ
(i)
s,j

}
j∈Is

}
. When the algorithm ends, ϕs,v f

and ϕs,ζ j
k ap-

proximate the required vo
f and ζo

j k. Presuming a clique topology, i.e.,
∣∣λs ∩ Γj

∣∣ = ∣∣Γj
∣∣ for ev-

ery s ∈ Γj, the even combination rule forms combination weights as in Equations (19) and (20).

h
v f
s,l =

1
|λs|

(19)

h
ζ j
s,l =

1∣∣λs ∩ Γj
∣∣ (20)

In conventional work, the adaptive weighting method is deployed as in Equations (21) and (22).

γs,l(i) = (1− u)γs,l(i− 1) + u
∥∥∥ψ

(i)
l − ϕ

(i−1)
s,v f

∥∥∥2
(21)

δs,l(i) = (1− u)δs,l(i− 1) + u
∥∥∥ζ

(i)
l − ϕ

(i−1)
s,ζ

∥∥∥2
(22)

As per our concept, the amplitude and phase components are considered separately
and the adaptive weighting mechanism is defined as shown in Equations (23) and (28).

γs,l(i) = (1− u)γs,l(i− 1) + u
(Zα(d) − Bβ(d)

2

)
(23)

Zα(d) = 1− tanh
[

20
α

log10

(
|X(d)|
|Y(d)| e

j(ψ(i)
l −ϕ

(i−1)
s,v f

)
)]

(24)
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Bβ(d) = 1− tanh

ψ
(i)
l − ϕ

(i−1)
s,v f

2πα

 (25)

δs,l(i) = (1− u)δs,l(i− 1) + u
(Zα(d) − Bβ(d)

2

)
(26)

Zα(d) = 1− tanh
[

20
α

log10

(
|X(d)|
|Y(d)| e

j(ζ(i)l −ϕ
(i−1)
s,ζ )

)]
(27)

Bβ(d) = 1− tanh

 ζ
(i)
l − ϕ

(i−1)
s,ζ

2πα

 (28)

Zα(d) = 1− tanh
[

20
α

log10

(
|X(d)|
|Y(d)| e

j(Ŵ(g:r,s,1)−W(g:r,s,1))
)]

(29)

Bβ(d) = 1− tanh

(
Ŵ(g : r, s, 1)−W(g : r, s, 1)

2πα

)
(30)

Zα(d) = 1− tanh
[

20
α

log10

(
|X(d)|
|Y(d)| e

j(Ŵ(1:mt(1),l,i−Ŵ(1:mt(1),s,i−1)))
)]

(31)

Bβ(d) = 1− tanh

(
Ŵ
(
1 : mt(1), l, i− Ŵ(1 : mt(1), s, i− 1)

)
2πα

)
(32)

Zα(d) = 1− tanh
[

20
α

log10

(
|X(d)|
|Y(d)| e

j(Ŵ(z:y,l,i −Ŵ(z:y,s,i−1 )))

)]
(33)

Bβ(d) = 1− tanh

(
Ŵ
(
z : y, l, i − Ŵ(z : y, s, i− 1 )

)
2πα

)
(34)

Zα(d) = 1− tanh
[

20
α

log10

(
|X(d)|
|Y(d)| e

j(Ŵ(g:e,s,i)−W(g:e,s,i))
)]

(35)

Bβ(d) = 1− tanh

(
Ŵ(g : e, s, i)−W(g : e, s, i)

2πα

)
(36)

In Equation (23), u refers to a smaller positive value between [0, 1] and γs,l and δs,l
refers to variance in the evaluation of common and global interest constraints. Subsequently,
the weights related to both common and global parameter evaluation process is performed
as shown in Equations (37) and (38).

h
v f
s,l (i) =

γ−1
s,l (i)

∑m∈ λsγ−1
s,m(i)

(37)

h
ζ j
s,l(i) =

δ−1
s,l (i)

∑m∈ λs ∩ Γjδ
−1
s,m(i)

(38)

Algorithms 1 and 2 show the pseudocode for CSAE and MSD estimation.
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Algorithm 1: Pseudo-code for CSAE

Output: MSD: S× (J + 1)× iter,Ŵ : M× S× iter
Input: S, O, M, J, iter, µ, B, mt, b, W, Vaug, Γ
Step 1: Initialization
Ŵ = LM×S×iter, Ŵ(:, :, 1) = randn(M, S, 1)e = LO×S×iter, MSD = LS×J+1×iter
for s = 1 : S do

g = 0, r = 0
for j = 1 : J + 1 do

g = r + 1
r = r + mt(j)
MSD(s, j, 1) =

( Zα(d)− Bβ(d)
2

)
Zα(d) and Bβ(d) are computed as shown in Equations (29) and (30)

end
end
Step2: Iterative Part
for i = 2 : iter do

Adaptation Step for each node
for s = 1 : S do

e(:, s, i) = b(:, s, i)−Vaug(:, :, s, i)Ŵ(:, s, i− 1) do
Ŵ(:, s, i) = Ŵ(:, s, i− 1) + µVH

aug(:, :, s, i)e(:, s, i)
end
for s = 1 : S do

Global: Adaptive Weight Estimation
for l = 1 : S do

γ(s, l, i) = (1− u)γ(s, l, i− 1) + u
( Zα(d)− Bβ(d)

2

)
Zα(d) and Bβ(d) are computed as shown in Equation (31) and Equation (32)

end
R f = Rule(B, R, γ, 3)
Rv = R f ⊗ Imt(1)
Elect only global constraint vectors from every user: ϕv f = Ŵ(1 : mt(1), :, i)
Concatenate a global set of constraints from every user ϕv f = ϕv f (:)
Combining step for Global ϕv f = Rv ϕv f ,

Ŵ(1 : mt(1), :, i) = reshape
(

ϕv f , mt(1), S
)

General: Adaptive Weights Estimation
z = 0, y = mt(1)
for j = 1 : J do
z = y + 1
y = y + mt(j + 1)

for l = 1 : S do

δ(s, l, i) = (1− u)δ(s, l, i− 1) + u
( Zα(d)− Bβ(d)

2

)
Zα(d) and Bβ(d) are computed as shown in Equations (33) and (34)

end
Rhj = Rule(B, R, δ, 4)
Rζ j = Rhj ⊗ Imt(j+1)
Elect userconcerned for jth subset of constraints: d = f ind(R(:, j + 1) 6= 0)
Elect jth subset of Mhj

general constraints from user in d = ϕζ j = Ŵ(z : y, h, i)
Concatenate jth subset of general constraints from every user ϕζ j = ϕζ j (:)
Combining step: ϕζ j = Rζ j ϕζ j

Ŵ(z : y, h, i) = reshape
(

ϕζ j , mt(j + 1), size(h, 1)
)

end
end

end
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Algorithm 2: Pseudo code for MSD Estimation

for s = 1 : S do
g = 0, e = 0
for j = 1 : J + 1 do

g = e + 1, e = e + mt(j)
MSD(s, j, i) =

( Zα(d)− Bβ(d)
2

)
Zα(d) and Bβ(d) are computed as shown in Equations (35) and (36)

end
end

5. Results and Discussion

The proposed Component-Specific CSS Model (CSCSSM) was implemented in MAT-
LAB. The CSCSSM was compared to the Priority-Based Two-Stage Detection Model
(PBTSDM) [24], Spectrum Binary Particle Swarm Optimization and Queuing Model
(SpecBPSO-QM) [28], Optimum Relay Selection and Accurate Cooperative Spectrum Sens-
ing for Hybrid Cognitive Radio Networks (ORS-ACSS) [29], and Adapt-Then-Combine
(ATC) method [35]. The CSCSSM and the compared methods were analyzed in terms of
Network MSD (dB) by varying the time (i). Here, a network with Q = 3 PUs, 5 Pus, and
K = 7 SUs, 11 SUs, and 15 SUs was simulated.

5.1. Analysis of Network MSD for the CSCSSM and the Conventional Methods with a Network of
Q = 3 PUs, and K = 7 SUs, 11 SUs, 15 SUs Simulated while Fixing the σ to 0.05

In this section, the Network MSD Error evaluation of the CSCSSM was compared to
that of the PBTSDM, ORS-ACSS, SpecBPSO-QM, and ATC methods in a network simulated
with Q = 3 Pus and K = 7 Sus, 11 Sus, and 15 SUs while adjusting the σ to 0.05 (Figure 1).
Also, the time (i) was varied from 1 to 10. The MSD error rate must be low for optimal
system performance. Time i is the time interval. While evaluating Figure 1a, at time
10, the CSCSSM obtained an MSD error of −27.18 dB, whereas the standard methods
recorded the highest MSD error rates: PBTSDM with−13.34 dB, ORS-ACSS with−17.84 dB,
SpecBPSO-QM with −23.14 dB and ATC with −24.72 dB. In accordance with Figure 1c,
the CSCSSM attained an MSD error of −27.91 dB (at time 10), which is extremely lower
than PBTSDM (−12.65 dB), ORS-ACSS (−19.74 dB), ATC adaptive weights (−23.46 dB)
and ATC (−24.26 dB). The performance of the CSCSSM seems to be more robust than the
other standard methods and therefore it attained enhanced performances with a minimal
MSD error rate.
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(c) Q = 3 PUs, K = 15 SUs while fixing the σ to 0.05.

5.2. Analysis of Network MSD for the CSCSSM and the Conventional Methods with a Network of
Q = 3 PUs or 5 PUs and K = 7 SUs, 11 SUs, or 15 SUs Simulated while Fixing the σ to 0.1

The MSD error evaluation of the CSCSSM was compared to that of the PBTSDM, ORS-
ACSS, Spec BPSO-QM, and ATC methods by adjusting the σ to 0.1. Also, a network with
Q = 3 PUs or 5 PUs, and K = 7 SUs, 11 SUs, or 15 SUs was simulated, and the findings are
displayed in Figure 2. On examining Figure 2c, it is evident that the CSCSSM maintained the
MSD error value for at the time 9 as approximately−27.48 dB, which is better than PBTSDM
with −16.62 dB, ORS-ACSS with −19.78 dB, Spec BPSO-QM with −21.67 dB, and ATC
with −23.54 dB. Simultaneously, at time 8, the CSCSSM generated an MSD of −28.42 dB as
seen in Figure 2e; meanwhile, the standard methodologies scored the lowest MSD, notably,
PBTSDM = −16.84 dB, ORS-ACSS = −18.93 dB, ATC adaptive weights = −19.48 dB, and
ATC = −26.74 dB. As a result, the CSCSSM had reduced and minimized MSD errors when
compared with the current methodologies.

5.3. Analysis of Network MSD for the CSCSSM and the Conventional Methods with a Network of
Q = 3 PUs or 5 PUs and K = 7 SUs, 11 SUs, or 15 SUs Simulated While Fixing the σ to 0.2

The comparison of CSCSSM to PBTSDM, ORS-ACSS, SpecBPSO-QM, and ATC for
both datasets is represented in Figure 3. The MSD error evaluation was carried out while
fixing the σ to 0.2 and a network was designed to simulate Q = 3 Pus or 5 PUs and K = 7 SUs,
11 SUs, or 15 SUs. According to Figure 3a, the CSCSSM generated an MSD error rate at time
10 of −32.84 dB, while for the PBTSDM, it was −19.56 dB; ORS-ACSS, it was −25.01 dB;
SpecBPSO-QM, it was −28.65 dB; and ATC, it was −29.89 dB. Considering Figure 3e at
time 7, the models PBTSDM, ORS-ACSS, SpecBPSO-QM, and ATC achieved an MSD error
value of −11.24 dB, −19.82 dB, −22.56 dB, and −23.74 dB, although the CSCSSM reported
an MSD error of −26.18 dB. This implies the MSD error value is diminished in the CSCSSM
in contrast to the previous schemes.

5.4. MSD Error Analysis of CSCSSM and Conventional Methods with a Network of Q = 3 PUs or
5 PUs and K = 7 SUs, 11 SUs, or 15 SUs Simulated by Varying the α

The effectiveness of the CSCSSM was assessed compared to the PBTSDM, ORS-ACSS,
SpecBPSO-QM, and ATC methods by varying the α from 0.1 to 1 in terms of the MSD error
measure and is presented in Table 1. Here, it a network of Q = 3 PUs or 5 PUs and K = 7 SUs,
11 SUs, or 15 SUs was simulated. In particular, while the Q was fixed to 3 PUs and K was
fixed as 11 SUs, the CSCSSM recorded an MSD error of −27 dB (α = 0.9), whereas the value
for PBTSDM was −13 dB, ORS-ACSS was −21 dB, SpecBPSO-QM was −24 dB, and ATC
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was −25 dB. For Q = 5 PUs and K = 7 SUs, the CSCSSM had the lowest MSD error rate
of −23 dB (α = 0.8). Meanwhile, the conventional methodologies had the highest MSD
error values: PBTSDM (0.8 dB), ORS-ACSS (−13 dB), SpecBPSO-QM (−17 dB), and ATC
(−20 dB). The CSCSSM performed well in the MSD error measurements compared to the
conventional algorithms, indicating that the MSD errors of the established algorithms is
extremely high.
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while fixing the σ to 0.1.
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Table 1. MSD error analysis of CSCSSM versus traditional methods with a network of Q = 3 PUS,
5 PUs and K = 7 SUs, 11 SUs, 15 Sus, simulated by varying the α.

Q = 3 PUs and K = 7 SUs

α PBTSDM ORS-ACSS ATC Adaptive Weights ATC CSCSSM

0.1 −5 −7 −8 −9 −10
0.2 −6 −9 −10 −11 −13
0.3 −7 −10 −12 −13 −16
0.4 −8 −11 −14 −15 −17
0.5 −9 −13 −16 −17 −19
0.6 −10 −14 −19 −20 −21
0.7 −11 −15 −20 −21 −22
0.8 −12 −17 −21 −22 −24
0.9 −13 −18 −22 −23 −25
1 −14 −19 −23 −24 −27

Q = 3 PUs and K = 11 SUs

α PBTSDM ORS-ACSS ATC Adaptive Weights ATC CSCSSM

0.1 −4 −6 −7 −8 −10
0.2 −5 −8 −10 −9 −11
0.3 −6 −9 −11 −12 −14
0.4 −7 −10 −13 −15 −17
0.5 −8 −11 −15 −18 −20
0.6 −9 −13 −17 −21 −23
0.7 −10 −16 −19 −23 −25
0.8 −11 −19 −22 −24 −26
0.9 −13 −21 −24 −25 −27
1 −15 −23 −26 −26 −28

Q = 3 PUs and K = 15 SUs

α PBTSDM ORS-ACSS ATC Adaptive Weights ATC CSCSSM

0.1 −4 −5 −7 −8 −9
0.2 −6 −7 −8 −9 −13
0.3 −7 −8 −10 −12 −15
0.4 −8 −9 −13 −15 −18
0.5 −9 −12 −15 −18 −20
0.6 −10 −15 −17 −21 −23
0.7 −12 −18 −19 −23 −25
0.8 −14 −21 −23 −26 −27
0.9 −16 −24 −25 −27 −29
1 −18 −27 −28 −29 −30

Q = 5 PUs and K = 7 SUs

α PBTSDM ORS-ACSS ATC Adaptive Weights ATC CSCSSM

0.1 0.1 −5 −6 −8 −10
0.2 0.2 −6 −7 −11 −12
0.3 0.3 −7 −8 −12 −13
0.4 0.4 −8 −9 −13 −14
0.5 0.5 −9 −10 −14 −15
0.6 0.6 −10 −11 −15 −18
0.7 0.7 −11 −13 −18 −20
0.8 0.8 −13 −17 −20 −23
0.9 0.9 −15 −19 −23 −25
1 1 −17 −20 −25 −28
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Table 1. Cont.

Q = 5 PUs and K = 11 SUs

α PBTSDM ORS-ACSS ATC Adaptive Weights ATC CSCSSM

0.1 −6 −7 −8 −9 −10
0.2 −7 −8 −9 −10 −12
0.3 −8 −9 −10 −11 −13
0.4 −9 −10 −13 −14 −17
0.5 −10 −11 −15 −17 −19
0.6 −11 −13 −17 −20 −21
0.7 −13 −15 −19 −22 −24
0.8 −15 −17 −23 −25 −26
0.9 −17 −20 −25 −27 −28
1 −19 −25 −28 −29 −31

Q = 5 PUs and K = 15 SUs

α PBTSDM ORS-ACSS ATC Adaptive Weights ATC CSCSSM

0.1 −4 −5 −6 −7 −8
0.2 −6 −7 −8 −9 −10
0.3 −7 −8 −9 −11 −13
0.4 −8 −9 −10 −13 −15
0.5 −9 −10 −13 −15 −17
0.6 −10 −13 −15 −17 −19
0.7 −11 −15 −18 −20 −23
0.8 −12 −18 −21 −22 −26
0.9 −16 −19 −23 −24 −27
1 −18 −21 −25 −27 28

The proposed component−specific cooperative spectrum sensing model (CSCSSM)
outperformed the existing methods because the proposed model handles the interrupted
secondary users’ requirement to switch operating channels. With this CSCSSM model, the
interactions between several channels are precisely described. Additionally, this model
uses the simultaneous consideration of traffic patterns and target channel selection strate-
gies on transmission latency to avoid spectrum handoff in CRNs. The collected results
demonstrate that the performance of the negotiated and opportunistic spectrum access
strategies vary noticeably. The proposed CSCSSM and the outcomes are very beneficial for
CRN optimization.

6. Conclusions

This paper implemented a new CSCSSM in CRNs. In the past, it was customary to
calculate the error between direct signal vectors. If phase shift or amplitude minimiza-
tion takes place, the error will be large and information will be lost. In order to reduce
information loss, a component−specific (amplitude and phase component) system model
for signal estimation was formulated. At time 10, the MSD error rate produced by the
CSCSSM was −32.84 dB, compared to −19.56 dB for the PBTSDM, −25.01 dB for the
ORSACSS, −28.65 dB for the SpecBPSO−QM, and −29.89 dB for the ATC. The models
PBTSDM, ORSACSS, SpecBPSO−QM, and ATC obtained MSD error values of −11.24 dB,
−19.82 dB, −22.56 dB, and −23.74 dB, respectively, while the CSCSSM recorded an MSD
error of −26.18 dB at time 7. This implies that the MSD error value was diminished in the
CSCSSM when compared to the previous schemes.
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Abbreviations

Abbreviation Description
ACSS Attack Aware CSS
ANN Artificial Neural Network
ATC Adapt Then Combine
CBCSS Cluster−Based CSS
CH Cluster Head
CR Cognitive Radio
CRN Cognitive Radio Networks
CSAE Component−Specific Adaptive Estimation
CSCSSM Component−Specific CSS Model
CSMA Carrier Sense Multiple Access
CSS Cooperative Spectrum Sensing
CSAE Component−Specific Adaptive Estimation
CSMA Carrier Sense Multiple Access
ED Energy Detector
EE Energy Efficiency
FA False Alarm
HD Hybrid Detector
MAC Media Access Control
MD Matched Detector
MRC Multiple Reporting Channel
ORS Optimal Relay Selection
PBTSDM Priority−Based Two−Stage Detection Model
PU Primary User
QoS Quality of Service
RACRN Random Access CRN
RF Radio Frequency
SD Standard Deviation
SE Spectral Efficiency
Spec BPSO Spectrum Binary Particle Swarm Optimization
SNR Signal−to−Noise Ratio
SS Spectrum Sensing
SU Secondary User
WRAN Wireless Regional Area Network
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