#
Brief Review on the Connection between the Micro-Canonical Ensemble and the S_{q}-Canonical Probability Distribution

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Probability Distributions Optimizing the ${S}_{q}$ Non-Additive Entropies

## 3. The Micro-Canonical Path towards the ${S}_{q}$-Canonical Distribution

- We have two weakly interacting systems, A and B, jointly described by the micro-canonical ensemble.
- The energy level distribution of subsystem B is quasi-continuous, and the number of states of system B with energy less than or equal to E grows as a power ${E}^{\eta}$.

## 4. When q-Exponentials Lacked a Name: From Maxwell to the Mid 1990s

## 5. The Many Facets of the ${S}_{q}$-Statistics-Micro-Canonical Connection

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Garcia Marquez, G. One Hundred Years of Solitude; Avon Books: New York, NY, USA, 1971. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys.
**1988**, 52, 479–487. [Google Scholar] [CrossRef] - Tsallis, C. Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Plastino, A.; Plastino, A.R. From Gibbs microcanonical ensemble to Tsallis generalized canonical distribution. Phys. Lett. A
**1994**, 193, 140–143. [Google Scholar] [CrossRef] - Tsallis, C. Entropy. Encyclopedia
**2022**, 2, 264–300. [Google Scholar] [CrossRef] - Jizba, P.; Korbel, J. Maximum Entropy Principle in statistical inference: Case for non-Shannonian entropies. Phys. Rev. Lett.
**2019**, 122, 120601. [Google Scholar] [CrossRef] [Green Version] - Naudts, J. Generalised Thermostatistics; Springer: London, UK, 2011. [Google Scholar]
- Beck, C. Generalised information and entropy measures in physics. Contemp. Phys.
**2009**, 50, 495–510. [Google Scholar] [CrossRef] - Amigó, J.M.; Balogh, S.G.; Hernández, S. A Brief Review of Generalized Entropies. Entropy
**2018**, 20, 813. [Google Scholar] [CrossRef] [Green Version] - Ilic, V.M.; Korbel, J.; Gupta, S.; Scarfone, A.M. An overview of generalized entropic forms. EPL
**2021**, 133, 50005. [Google Scholar] [CrossRef] - dos Santos, M.A.F.; Nobre, F.D.; Curado, E.M.F. Entropic form emergent from superstatistics. Phys. Rev. E
**2023**, 107, 014132. [Google Scholar] [CrossRef] - Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. EPL
**2011**, 93, 20006. [Google Scholar] [CrossRef] - Amigó, J.M.; Dale, R.; Tempesta, P. Complexity-based permutation entropies: From deterministic time series to white noise. Commun. Nonlinear Sci. Numer. Simul.
**2022**, 105, 106077. [Google Scholar] [CrossRef] - Gell-Mann, M.; Tsallis, C. Nonextensive Entropy: Interdisciplinary Applications; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Lenzi, E.K.; Dos Santos, M.A.F.; Michels, F.S.; Mendes, R.S.; Evangelista, L.R. Solutions of Some Nonlinear Diffusion Equations and Generalized Entropy Framework. Entropy
**2013**, 15, 3931–3940. [Google Scholar] [CrossRef] [Green Version] - Livadiotis, G.; McComas, D.J. Understanding Kappa Distributions: A Toolbox for Space Science and Astrophysics. Space Sci. Rev.
**2013**, 175, 183. [Google Scholar] [CrossRef] [Green Version] - Tsallis, C. Beyond Boltzmann-Gibbs-Shannon in physics and elsewhere. Entropy
**2019**, 21, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Sánchez Almeida, J. The Principle of Maximum Entropy and the Distribution of Mass in Galaxies. Universe
**2022**, 8, 214. [Google Scholar] [CrossRef] - Wild, R.; Nötzold, M.; Simpson, M.; Tran, T.D.; Wester, R. Tunnelling measured in a very slow ion–molecule reaction. Nature
**2023**, 615, 425–429. [Google Scholar] [CrossRef] [PubMed] - Feynman, R. Statistical Mechanics: A Set of Lectures; Addison-Wesley: Reading, MA, USA, 1972. [Google Scholar]
- Baranger, M. Why Tsallis statistics? Physica A
**2002**, 305, 27–31. [Google Scholar] [CrossRef] - Saadatmand, S.N.; Gould, T.; Cavalcanti, E.G.; Vaccaro, J.A. Thermodynamics from first principles: Correlations and nonextensivity. Phys. Rev. E
**2020**, 101, 060101. [Google Scholar] [CrossRef] - Plastino, A.R.; Tsallis, C.; Wedemann, R.S.; Haubold, H.J. Entropy Optimization, Generalized Logarithms, and Duality Relations. Entropy
**2022**, 24, 1723. [Google Scholar] [CrossRef] - Maxwell, J.C. On Boltzmann’s Theorem on the Average Distribution of Energy in a System of Material Points. Trans. Camb. Philos. Soc.
**1879**, XII, 547–570. [Google Scholar] - Niven, W.D. (Ed.) The Scientific Papers Of James Clerk Maxwell; Cambridge University Press: Cambridge, UK, 1890; Volume II. [Google Scholar]
- Ray, J.R.; Graben, H.W. Small systems have non-Maxwellian momentum distributions in the microcanonical ensemble. Phys. Rev. A
**1991**, 44, 6905. [Google Scholar] [CrossRef] - Román, F.L.; White, J.A.; Velasco, S. Microcanonical single-particle distributions for an ideal gas in a gravitational field. Eur. J. Phys.
**1995**, 16, 83. [Google Scholar] [CrossRef] - Velazquez, L.; Guzmán, F. Remarks about the Tsallis formalism. Phys. Rev. E
**2002**, 65, 046134. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Adib, A.B.; Moreira, A.A.; Andrade, J.S., Jr.; Almeida, M.P. Tsallis thermostatistics for finite systems: A Hamiltonian approach. Physica A
**2003**, 322, 276–284. [Google Scholar] [CrossRef] [Green Version] - Almeida, M.P. Thermodynamical entropy (and its additivity) within generalized thermodynamics. Physica A
**2003**, 325, 426–438. [Google Scholar] [CrossRef] [Green Version] - Potiguar, F.Q.; Costa, U.M.S. Thermodynamical relations for systems in contact with finite heat baths. Physica A
**2004**, 344, 614. [Google Scholar] [CrossRef] - Hanel, R.; Thurner, S. Derivation of power-law distributions within standard statistical mechanics. Physica A
**2005**, 351, 260–268. [Google Scholar] [CrossRef] [Green Version] - Naudts, J.; Baeten, M. Non-extensivity of the configurational density distribution in the classical microcanonical ensemble. Entropy
**2009**, 11, 285–294. [Google Scholar] [CrossRef] [Green Version] - Bagci, G.B.; Oikonomou, T. Tsallis power laws and finite baths with negative heat capacity. Phys. Rev. E
**2013**, 88, 042126. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ramshaw, J.D. Supercanonical probability distributions. Phys. Rev. E
**2018**, 98, 020103. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Biró, T.S.; Barnaföldi, G.G.; Van, P. Quark-gluon plasma connected to finite heat bath. Eur. Phys. J. C
**2013**, 49, 110:1–110:5. [Google Scholar] [CrossRef] [Green Version] - Wilk, G.; Włodarczyk, Z. Tsallis Distribution Decorated with Log-Periodic Oscillation. Entropy
**2015**, 17, 384–400. [Google Scholar] [CrossRef] [Green Version] - Lima, J.A.S.; Deppman, A. Tsallis meets Boltzmann: q-index for a finite ideal gas and its thermodynamic limit. Phys. Rev. E
**2020**, 101, 040102. [Google Scholar] [CrossRef] [PubMed] - Shim, J.W. Entropy formula of N-body system. Sci. Rep.
**2020**, 10, 14029. [Google Scholar] [CrossRef] [PubMed] - Deppman, A. Thermofractals, Non-Additive Entropy, and q-Calculus. Physics
**2021**, 3, 290–301. [Google Scholar] [CrossRef] - Deppman, A.; Megías, E.; Menezes, D.P. Fractal Structures of Yang–Mills Fields and Non-Extensive Statistics: Applications to High Energy Physics. Physics
**2020**, 2, 455–480. [Google Scholar] [CrossRef] - Megías, E.; Lima, J.A.S.; Deppman, A. Transport Equation for Small Systems and Nonadditive Entropy. Mathematics
**2022**, 10, 1625. [Google Scholar] [CrossRef] - Ramshaw, J.D. Maximum entropy and constraints in composite systems. Phys. Rev. E
**2022**, 105, 024138. [Google Scholar] [CrossRef] - Capote, T. Breakfast at Tiffany’s; Penguin Classics: New York, NY, USA, 2000. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Plastino, A.R.; Plastino, A.
Brief Review on the Connection between the Micro-Canonical Ensemble and the *S _{q}*-Canonical Probability Distribution.

*Entropy*

**2023**,

*25*, 591. https://doi.org/10.3390/e25040591

**AMA Style**

Plastino AR, Plastino A.
Brief Review on the Connection between the Micro-Canonical Ensemble and the *S _{q}*-Canonical Probability Distribution.

*Entropy*. 2023; 25(4):591. https://doi.org/10.3390/e25040591

**Chicago/Turabian Style**

Plastino, Angel R., and Angelo Plastino.
2023. "Brief Review on the Connection between the Micro-Canonical Ensemble and the *S _{q}*-Canonical Probability Distribution"

*Entropy*25, no. 4: 591. https://doi.org/10.3390/e25040591