# A Quantum–Classical Model of Brain Dynamics

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Bipartite Structure of Psychology as the Root for Quantum–Classical Models of the Brain

#### 2.1. General Semantics

#### 2.2. Pauli and Jung’s Synchronicity

#### 2.3. The Bi-Logical Structure of Psychology

## 3. Schrödinger’s ‘Order from Order’ and Jordan’s Quantum Amplification

## 4. Electromagnetic Fields in the Brain

## 5. Penrose and Hameroff’s Orch OR

## 6. The Dissipative Quantum Model of Brain

## 7. The Quantum–Classical Model of Brain

#### Constant Temperature Quantum–Classical Dynamics

## 8. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

ACS | alternating current stimulation |

CaMKII | calcium-calmodulin kinase II |

DOF | degrees of freedom |

DQMB | dissipative quantum model of brain |

EMF | electromagnetic field |

GS | general semantics |

MAPs | microtubule-associated proteins |

NHC | Nosé–Hoover chain |

Orch OR | orchestrated objective reduction |

QC | quantum–classical |

QFT | quantum field theory |

QFTMB | quantum field theory model of brain |

SSB | spontaneous symmetry breaking |

tDCS | transcranial direct-current stimulation |

## References

- von Bartheld, C.S.; Bahney, J.; Herculano-Houzel, S. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting. J. Comp. Neurol.
**2016**, 524, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version] - McIlwain, H.; Bachelard, H.S. Biochemistry and the Central Nervous System; Churchill Livingstone: Edinburgh, UK, 1985. [Google Scholar]
- McFadden, J. Integrating information in the brain’s EM field: The cemi field theory of consciousness. Neurosci. Conscious.
**2020**, 6, niaa016. [Google Scholar] [CrossRef] [PubMed] - McFadden, J. Synchronous Firing and Its Influence on the Brain’s Electromagnetic Field. J. Conscious. Stud.
**2002**, 9, 23. [Google Scholar] - McFadden, J. The CEMI Field Theory: Closing the loop. J. Conscious. Stud.
**2013**, 20, 153. [Google Scholar] - Hales, C.G.; Pockett, S. The relationship between local field potentials (LFPs) and the electromagnetic fields that give rise to them. Front. Neurosci.
**2014**, 8, 1–4. [Google Scholar] [CrossRef] [Green Version] - Pockett, S.; Brennan, B.J.; Bold, G.E.J.; Holmes, M.D. A possible physiological basis for the discontinuity of consciousness. Front. Psychol.
**2011**, 2, 377. [Google Scholar] [CrossRef] [Green Version] - Pockett, S.; Holmes, M.D. Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Conscious. Cogn.
**2009**, 18, 1049. [Google Scholar] [CrossRef] - Liboff, A.R. Magnetic correlates in electromagnetic consciousness. Electromagn. Biol. Med.
**2016**, 35, 228. [Google Scholar] [CrossRef] [PubMed] - Liboff, A.R. A human source for ELF magnetic perturbations. Electromagn. Biol. Med.
**2016**, 35, 337. [Google Scholar] [CrossRef] [PubMed] - Fröhlich, F.; McCormick, D.A. Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron
**2010**, 67, 129. [Google Scholar] [CrossRef] [Green Version] - Penrose, R. On Gravity’s Role in Quantum State Reduction. Gen. Relativ. Gravit.
**1996**, 8, 581. [Google Scholar] [CrossRef] [Green Version] - Penrose, R. On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Found. Phys.
**2014**, 44, 557. [Google Scholar] [CrossRef] [Green Version] - Penrose, R. On the Gravitization of Quantum Mechanics 2: Conformal Cyclic Cosmology. Found. Phys.
**2014**, 44, 873. [Google Scholar] [CrossRef] [Green Version] - Penrose, R. The Emperor’s New Mind; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Penrose, R. Shadows of the Mind; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Hameroff, S.; Penrose, R. Consciousness events as orchestrated space-time selections. J. Conscious. Stud.
**1996**, 2, 36. [Google Scholar] - Hameroff, S.; Penrose, R. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Math. Comput. Simul.
**1996**, 40, 453. [Google Scholar] [CrossRef] - Hameroff, S.; Penrose, R. Consciousness in the universe. A review of the ‘Orch OR’ theory. Phys. Life Rev.
**2014**, 11, 39. [Google Scholar] [CrossRef] [Green Version] - Hameroff, S.; Nip, A.; Porter, M.; Tuszynski, J. Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems
**2002**, 64, 149. [Google Scholar] [CrossRef] - Craddock, T.J.A.; Hameroff, S.R.; Ayoub, A.T.; Klobukowski, M.; Tuszynski, J.A. Anestetics Act in Quantum Channels in Brain Microtubules to Prevent Consciousness. Curr. Top. Med. Chem.
**2015**, 15, 523. [Google Scholar] [CrossRef] [PubMed] - Fisher, M.P.A. Quantum cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys.
**2015**, 362, 593. [Google Scholar] [CrossRef] [Green Version] - Weingarten, C.P.; Doraiswamy, P.M.; Fisher, M.P.A. A new spin on neural processing: Quantum cognition. Front. Hum. Neurosci.
**2016**, 10, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ettenberg, A.; Ayala, K.; Krug, J.T.; Collins, L.; Mayes, M.S.; Fisher, M.P.A. Differential effects of lithium isotopes in a ketamine-induced hyperactivity model of mania. J. Pharmacol. Biochem. Behav.
**2020**, 190, 172875. [Google Scholar] [CrossRef] [PubMed] - Kerskens, C.M.; Pérez, D.L. Experimental indications of non-classical brain functions. J. Phys. Commun.
**2022**, 6, 105001. [Google Scholar] [CrossRef] - Hameroff, S.R. The Brain is Both Neurocomputer and Quantum Computer. Cogn. Sci.
**2007**, 31, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Vitiello, G. Dissipation and memory capacity in the quantum brain model. Int. J. Mod. Phys.
**1995**, 9, 973. [Google Scholar] [CrossRef] - Pessa, E.; Vitiello, G. Quantum dissipation and Neural Net Dynamics. Bioelectrochemistry Bioenerg.
**1999**, 48, 339–342. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Alfinito, E.; Vitiello, G. The dissipative quantum model of brain: How does memory localize in correlated neuronal domain. Inf. Sci.
**2000**, 128, 217–229. [Google Scholar] [CrossRef] - Freeman, W.J.; Vitiello, G. The Dissipative Quantum Model of Brain and Laboratory Observations. In Physics of Emergence and Organization; World Scientific: Singapore, 2008; pp. 233–251. [Google Scholar]
- Freeman, W.J.; Vitiello, G. Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys. Life Rev.
**2006**, 3, 93. [Google Scholar] [CrossRef] [Green Version] - Freeman, W.J.; Vitiello, G. Dissipative neurodynamics in perception forms cortical patterns that are stabilized by vortices. J. Phys. Conf. Ser.
**2009**, 174, 012011. [Google Scholar] [CrossRef] [Green Version] - Vitiello, G. Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics. J. Phys. Conf. Ser.
**2012**, 380, 012021. [Google Scholar] [CrossRef] - Vitiello, G. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning. Curr. Opin. Neurobiol.
**2014**, 31, 7. [Google Scholar] [CrossRef] - Sabbadini, S.A.; Vitiello, G. Entanglement and Phase-Mediated Correlations in Quantum Field Theory. Application to Brain-Mind States. Appl. Sci.
**2019**, 9, 3203. [Google Scholar] [CrossRef] [Green Version] - Korzybiski, A. Science and Sanity. An Introduction to Non-Aristotelian Systems and General Semantics; Institute of General Semantics: Fort Worth, TX, USA, 2005. [Google Scholar]
- Kodish, S.B.; Kodish, B.I. Drive Yourself Sane: Using the Uncommon Sense of General Semantics; Extensional Publishing: Pasadena, CA, USA, 2011. [Google Scholar]
- Korzybski, A. Alfred Korzybski: Collected Writings 1920–1950; Institute of General Semantics: Englewood, CO, USA, 1990. [Google Scholar]
- Christopher, P. They’re Stealing Our General Semantics. ETC
**1998**, 55, 217. [Google Scholar] - Meier, C.A. (Ed.) Atom and the Archetype: The Pauli/Jung Letters 1932–1958; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Atmanspacher, H.; Fuchs, C. (Eds.) The Pauli-Jung Conjecture; Imprint Academics: Exter, UK, 2014. [Google Scholar]
- Lindorss, D. Pauli and Jung; Quest Books: Wheaton, IL, USA, 2009. [Google Scholar]
- Jung, C.G. Synchronicity: An Acausal Connecting Principle; Bollingen Foundation: Bollingen, Switzerland, 1993. [Google Scholar]
- Jung, C.G.; Pauli, W.E. The Interpretation of Nature and Psyche; Pantheon Books: New York, NY, USA, 1955. [Google Scholar]
- Blanco, I.M. The Unconscious as Infinite Sets: An Essay in Bi-Logic; Karnac Books: London, UK, 1980. [Google Scholar]
- Blanco, I.M. Thinking, Feeling, and Being. Clinical Reflections on the Fundamental Antinomy of Human Beings and World; Routlege: London, UK, 1988. [Google Scholar]
- Rayner, E. Unconscious Logic. An Introduction to Matte Blanco’s Bi-Logic and Its Uses; Routledge: London, UK, 1995. [Google Scholar]
- Lombardi, R. Formless Infinity: Clinical Explorations of Matte Blanco and Bion; Routledge: London, UK, 2015. [Google Scholar]
- Bear, M.; Connors, B.C.; Paradiso, M.A. Neuroscience: Exploring the Brain, Enhanced Edition; Jones & Bartlett: Burlington, VT, USA, 2020. [Google Scholar]
- Translational Neuroscience. Applications in Psychiatry, Neurology, and Neurodevelopmental Disorders; Barrett, J.E., Coyle, J.T., Williams, M., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Translational Neuroscience. A Guide to a Successful Program; Garcia-Rill, E., Ed.; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- Tuszynski, M.H. (Ed.) Translational Neuroscience: Fundamental Approaches for Neurological Disorders; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Conn, P.M. (Ed.) Conn’s Translational Neuroscience; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gargiulo, P.Á.; Mesones-Arroyo, H.L. (Eds.) Psychiatry and Neuroscience Update: A Translational Approach, II; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Altamura, A.C.; Brambilla, P. (Eds.) Clinical Cases in Psychiatry: Integrating Translational Neuroscience Approaches; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Gargiulo, P.Á.; Mesones Arroyo, H.L. (Eds.) Psychiatry and Neuroscience Update: From Translational Research to a Humanistic Approach—III; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Tanaka, S.; Umegaki, T.; Nishiyama, A.; Kitoh-Nishioka, H. Dynamical Free Energy Based Model for Quantum Decision Making. Phys. A
**2022**, 605, 127979. [Google Scholar] [CrossRef] - Khrennikov, A. Quantum-like modeling of cognition. Front. Phys.
**2015**, 3, 77. [Google Scholar] [CrossRef] [Green Version] - Khrennikov, A. Quantum-like modeling: Cognition, decision making, and rationality. Mind Soc.
**2020**, 19, 307. [Google Scholar] [CrossRef] - Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finances; Springer: Berlin, Germany, 2010. [Google Scholar]
- Bond, R.L.; He, Y.-H.; Ormerod, T.C. A quantum framework for likelihood ratios. Int. J. Quantum Inf.
**2018**, 16, 1850002. [Google Scholar] [CrossRef] [Green Version] - Basieva, I.; Pandey, V.; Khrennikova, P. More Causes Less Effect: Destructive Interference in Decision Making. Entropy
**2022**, 24, 725. [Google Scholar] [CrossRef] - Busemeyer, J.R.; Pothos, E.; Franco, R.; Trueblood, J.S. A quantum theoretical explanation for probability judgment ‘errors’. Psychol. Rev.
**2011**, 118, 193. [Google Scholar] [CrossRef] [Green Version] - Van den Noort, M.; Lim, S.; Bosch, P. On the need to unify neuroscience and physics. Neuroimmunol. Neuroinflammation
**2016**, 3, 271. [Google Scholar] [CrossRef] [Green Version] - Asano, M.; Basieva, I.; Khrennikov, P.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology. Found. Phys.
**2015**, 45, 1362. [Google Scholar] [CrossRef] [Green Version] - Silin, V.P. The Kinetics of Paramagnetic Phenomena. Zh. Teor. Eksp. Fiz.
**1956**, 30, 421. [Google Scholar] - Rukhazade, A.A.; Silin, V.P. On the magnetic susceptibility of a relativistic electron gas. Soviet Phys. JETP
**1960**, 11, 463. [Google Scholar] - Balescu, R.A. Covariant Formulation of Relativistic Quantum Statistical Mechanics, I. Phase Space Description of a Relativistic Quantum Plasma. Acta Phys. Aust.
**1968**, 28, 336. [Google Scholar] - Zhang, W.Y.; Balescu, R. Statistical Mechanics of a spin-polarized plasma. J. Plasma Phys.
**1988**, 40, 199. [Google Scholar] [CrossRef] - Balescu, R.; Zhang, W.Y. Kinetic equation, spin hydrodynamics and collisional depolarization rate in a spin polarized plasma. J. Plasma Phys.
**1988**, 40, 215. [Google Scholar] [CrossRef] - Aleksandrov, I.V. The Statistical Dynamics of a System Consisting of a Classical and a Quantum Subsystem. Z. Naturforsch. A
**1981**, 36, 902. [Google Scholar] [CrossRef] - Gerasimenko, V.I. Dynamical equations of quantum-classical systems. Theor. Math. Phys.
**1982**, 50, 49. [Google Scholar] [CrossRef] - Boucher, W.; Traschen, J. Semiclassical physics and quantum fluctuations. Phys. Rev. D
**1988**, 37, 3522. [Google Scholar] [CrossRef] - Petrina, D.Y.; Gerasimenko, V.I.; Enolskii, V.Z. Equations of motion of one class of quantum-classical systems. Sov. Phys. Dokl.
**1990**, 35, 925. [Google Scholar] - Prezhdo, O.V.; Kisil, V.V. Mixing quantum and classical mechanics. Phys. Rev. A
**1997**, 56, 162. [Google Scholar] [CrossRef] [Green Version] - Kapral, R.; Ciccotti, G. Mixed quantum-classical dynamics. J. Chem. Phys.
**1999**, 110, 8919. [Google Scholar] [CrossRef] - Nielsen, S.; Kapral, R.; Ciccotti, G. Statistical mechanics of quantum-classical systems. J. Chem. Phys.
**2001**, 115, 5805. [Google Scholar] [CrossRef] - Sergi, A. Non-Hamiltonian Commutators in Quantum Mechanics. Phys. Rev. E
**2005**, 72, 066125. [Google Scholar] [CrossRef] [Green Version] - Sergi, A. Deterministic constant-temperature dynamics for dissipative quantum systems. J. Phys. A
**2007**, 40, F347. [Google Scholar] [CrossRef] [Green Version] - Sergi, A.; Hanna, G.; Grimaudo, R.; Messina, A. Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths. Symmetry
**2018**, 10, 518. [Google Scholar] [CrossRef] [Green Version] - Osborn, T.A.; Kondratèva, M.F.; Tabisz, G.C.; McQuarrie, B.R. Mixed Weyl symbol calculus and spectral line shape theory. J. Phys. A Math. Gen.
**1999**, 32, 4149. [Google Scholar] [CrossRef] - Martens, C.C.; Fang, J.Y. Semiclassical-Limit Molecular Dynamics on Multiple Electronic Surfaces. J. Chem. Phys.
**1996**, 106, 4918. [Google Scholar] [CrossRef] - Donoso, A.; Martens, C.C. Simulation of Coherent Nonadiabatic Dynamics Using Classical Trajectories. J. Phys. Chem. A
**1998**, 102, 4291. [Google Scholar] [CrossRef] - Sergi, A.; Kapral, R. Quantum-Classical Limit of Quantum Correlation Functions. J. Chem. Phys.
**2004**, 121, 7565. [Google Scholar] [CrossRef] [Green Version] - Uken, D.A.; Sergi, A. Quantum dynamics of a plasmonic metamolecule with a time-dependent driving. Theor. Chem. Acc.
**2015**, 134, 141. [Google Scholar] [CrossRef] [Green Version] - Sergi, A.; Sinayskiy, I.; Petruccione, F. Numerical and Analytical Approach to the Quantum Dynamics of Two Coupled Spins in Bosonic Baths. Phys. Rev. A
**2009**, 80, 012108. [Google Scholar] [CrossRef] [Green Version] - Sergi, A.; Kapral, R. Quantum-Classical Dynamics of Nonadiabatic Chemical Reactions. J. Chem. Phys.
**2003**, 118, 8566. [Google Scholar] [CrossRef] - Leggett, J.A.; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two state system. Rev. Mod. Phys.
**1987**, 59, 1. [Google Scholar] [CrossRef] - Bakemeier, L.; Alvermann, A.; Fehske, H. Quantum phase transition in the Dicke model with critical and noncritical entanglement. Phys. Rev. A
**2012**, 85, 043821. [Google Scholar] [CrossRef] [Green Version] - Hwang, M.-J.; Puebla, R.; Plenio, M.B. Quantum Phase Transition and Universal Dynamics in the Rabi Model. Phys. Rev. Lett.
**2015**, 115, 180404. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Finney, G.A.; Gea-Banacloche, J. Quasiclassical approximation for the spin-boson Hamiltonian with counterrotating terms. Phys. Rev. A
**1994**, 50, 2040. [Google Scholar] [CrossRef] [PubMed] - Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys.
**1992**, 92, 2635. [Google Scholar] [CrossRef] - Sergi, A.; Ferrario, M. Non-Hamiltonian Equations of Motion with a Conserved Energy. Phys. Rev. E
**2001**, 64, 056125. [Google Scholar] [CrossRef] - Sergi, A. Non-Hamiltonian Equilibrium Statistical Mechanics. Phys. Rev. E
**2003**, 67, 021101. [Google Scholar] [CrossRef] - Riddle, J.; McFerren, A.; Frohlich, F. Causal role of cross-frequency coupling in distinct components of cognitive control. Prog. Neurobiol.
**2021**, 202, 102033. [Google Scholar] [CrossRef] - Riddle, J.; Scimeca, J.M.; Cellier, D.; Dhanani, S.; D’Esposito, M. Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory. Curr. Biol.
**2020**, 30, 1748. [Google Scholar] [CrossRef] - Abubaker, M.; Al Qasem, W.; Kvas̆n̆ák, E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Front. Psychol.
**2021**, 12, 756661. [Google Scholar] [CrossRef] [PubMed] - Croce, P.; Zappasodi, F.; Capotosto, P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Sci. Rep.
**2018**, 8, 1287. [Google Scholar] [CrossRef] [Green Version] - Caruana, F.; Gerbella, M.; Avanzini, P.; Gozzo, F.; Pelliccia, V.; Mai, R.; Abdollahi, R.O.; Cardinale, F.; Sartori, I.; Lo Russo, G.; et al. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain
**2018**, 141, 3035. [Google Scholar] [CrossRef] [PubMed] - Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol.
**2000**, 527, 633. [Google Scholar] [CrossRef] - Stagg, C.J.; Nitsche, M.A. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist
**2011**, 17, 37. [Google Scholar] [CrossRef] - Papazova, I.; Strube, W.; Wienert, A.; Henning, B.; Schwippel, T.; Fallgatter, A.J.; Padberg, F.; Falkai, P.; Plewnia, C.; Hasan, A. Effects of 1 mA and 2 mA transcranial direct current stimulation on working memory performance in healthy participants. Conscious. Cogn.
**2020**, 83, 102959. [Google Scholar] [CrossRef] - Yavari, F.; Jamil, A.; Samani, M.M.; Vidor, L.P.; Nitsche, M.A. Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction. Neurosci. Biobehav. Rev.
**2018**, 85, 81–92. [Google Scholar] [CrossRef] - Anastassiou, C.A.; Perin, R.; Markram, H.; Koch, C. Ephaptic coupling of cortical neurons. Nat. Neurosci.
**2011**, 14, 217. [Google Scholar] [CrossRef] - Martinez-Banaclocha, M. Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience
**2018**, 370, 37. [Google Scholar] [CrossRef] - Pinotsis, D.A.; Miller, E.K. Beyond dimension reduction: Stable electric fields emerge from and allow representational drift. NeuroImage
**2022**, 253, 119058. [Google Scholar] [CrossRef] - Vicario, C.M.; Nitsche, M.A.; Hoysted, I.; Yavari, F.; Avenanti, A.; Salehinejad, M.A.; Felmingham, K.L. Anodal transcranial direct current stimulation over the ventromedial prefrontal cortex enhances fear extinction in healthy humans: A single blind sham-controlled study. Brain Stimul.
**2020**, 13, 489–491. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ney, L.J.; Vicario, C.M.; Nitsche, M.A.; Felmingham, K.L. Timing matters: Transcranial direct current stimulation after extinction learning impairs subsequent fear extinction retention. Neurobiol Learn Mem.
**2021**, 177, 107356. [Google Scholar] [CrossRef] - Markovir̀c, V.; Vicario, C.M.; Yavari, F.; Salehinejad, M.A.; Nitsche, M.A. A Systematic Review on the Effect of Transcranial Direct Current and Magnetic Stimulation on Fear Memory and Extinction. Front Hum Neurosci.
**2021**, 22, 655947. [Google Scholar] [CrossRef] [PubMed] - Vicario, C.M.; Salehinejad, M.A.; Mosayebi-Samani, M.; Maezawa, H.; Avenanti, A.; Nitsche, M.A. Transcranial direct current stimulation over the tongue motor cortex reduces appetite in healthy humans. Brain Stimul.
**2020**, 13, 1121–1123. [Google Scholar] [CrossRef] - Nunez, P.L.; Srinivasan, R. The Neurophysics of EEG; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Stapp, H.P. The Copenhagen Interpretation. Am. J. Phys.
**1972**, 40, 1098. [Google Scholar] [CrossRef] [Green Version] - von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, UK, 1983. [Google Scholar]
- Schrödinger, E. What is life? With Mind And Matter, and Autobiographical Sketches; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Watson, J.D.; Crick, F.H.C. A structure for deoxyribose nucleic acid. Nature
**1953**, 171, 737. [Google Scholar] [CrossRef] [PubMed] - Pray, L. Discovery of DNA structure and function: Watson and Crick. Nat. Educ.
**2008**, 1, 100. [Google Scholar] - Beyler, R. From Positivism to Organicism: Pascual Jordan’s Interpretations of Modem Physics in Cultural Contex. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1994. [Google Scholar]
- Beyler, R. Targeting the Organism. The Scientific and Cultural Context of Pascual Jordan’s Quantum Biology, 1932–1947. Isis
**1996**, 87, 248. [Google Scholar] [CrossRef] - Al-Khalili, J.; McFadden, J. Life on the Edge: The Coming of Age of Quantum Biology; Bantam Press: London, UK, 2014. [Google Scholar]
- McFadden, J. Quantum Evolution; Norton: New York, NY, USA, 2002. [Google Scholar]
- Joos, E.; Zeh, H.D.; Kiefer, C.; Giulini, D.; Kupsch, J.; Stamatescu, I.-O. Decoherence and the Appearance of a Classical World in Quantum Theory; Springer: Berlin, Germanny, 2003. [Google Scholar]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.
**2003**, 75, 715. [Google Scholar] [CrossRef] [Green Version] - Tegmark, M. Importance of quantum decoherence in brain processes. Phys. Rev. E
**2000**, 61, 4194. [Google Scholar] [CrossRef] [Green Version] - Chuang, I.; Nielsen, M. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Jaeger, G. Entanglement, Information, and the Interpretation of Quantum Mechanics; Springer: Berlin, Germany, 2009. [Google Scholar]
- Lloyd, L. Quantum search without entanglement. Phys. Rev. A
**1999**, 61, 010301(R). [Google Scholar] [CrossRef] [Green Version] - Meyer, D.A. Sophisticated Quantum Search Without Entanglement. Phys. Rev. Lett.
**2000**, 85, 2014. [Google Scholar] [CrossRef] [Green Version] - Biham, E.; Brassard, G.; Kenigsberg, D.; Mor, T. Quantum computing without entanglement. Theor. Comput. Sci.
**2004**, 320, 15. [Google Scholar] [CrossRef] - Lanyon, B.P.; Barbieri, M.; Almeida, M.P.; White, A.G. Experimental Quantum Computing without Entanglement. Phys. Rev. Lett.
**2008**, 101, 200501. [Google Scholar] [CrossRef] [Green Version] - Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften
**1935**, 23, 807. [Google Scholar] [CrossRef] - Friston, K. A free energy principle for biological systems. Entropy
**2012**, 14, 2100. [Google Scholar] - Sánchez-Can˜izares, J. The free energy principle: Good science and questionable philosophy in a grand unifying theory. Entropy
**2021**, 23, 238. [Google Scholar] - Ellis, A.; Harper, R.A. A New Guide to Rational Living; Wilshire Books: North Hollywood, CA, USA, 1977. [Google Scholar]
- Wysong, J. Alfred Korzybski and Gestalt Therapy. In The Gestalt Journal; 1998; Available online: www.gestalt.org/alfred.htm (accessed on 9 January 2023).
- Barlow, A.R. The Derivation of a Psychological Theory: Gestalt Therapy. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 1983. [Google Scholar]
- Minuchin, S. Families and Family Therapy; Harvard University Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Bowen, M. Family Therapy in Clinical Practice; Jason Aronson: New York, NY, USA, 1978. [Google Scholar]
- Ballentine, L.E. Quantum Mechanics; World Scientific: Singapore, 2001. [Google Scholar]
- Weinberg, S. Lectures on Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Jung, C.G. The Archetypes and the Collective Unconscious; Routledge: New York, NY, USA, 1991. [Google Scholar]
- Percival, R.S. Is Jung’s Theory of Archetypes Compatible with Neo-Darwinism and Sociobiology? J. Soc. Evol. Syst.
**1993**, 16, 459. [Google Scholar] [CrossRef] [Green Version] - Zee, A. Quantum Field Theory in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Mandl, F.; Shaw, G. Quantum Field Theory; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: New York, USA, 1985. [Google Scholar]
- Blundell, S.J.; Blundell, K.M. Concepts in Thermal Physics; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Ohya, M.; Petz, M. Quantum Entropy and Its Use; Springer: Berlin, Germany, 1993. [Google Scholar]
- Heusler, S.; Dür, W.; Ubben, M.S.; Hartmann, A. Aspects of entropy in classical and in quantum physics. J. Phys. A Math. Theor.
**2022**, 55, 404006. [Google Scholar] [CrossRef] - Portmann, O.; Glzer, A.; Saratz, N.; Billoni, O.V.; Pescia, D.; Vindign, A. Scaling hypothesis for modulated systems. Phys. Rev. B
**2010**, 82, 184409. [Google Scholar] [CrossRef] [Green Version] - Borycki, D.; Marćkowiak, J. Reentrant behavior of superconducting alloys. Supercond. Sci. Technol.
**2011**, 24, 035007. [Google Scholar] [CrossRef] - Avraham, N.; Khaykovich, B.; Myasoedov, Y.; Rappaport, M.; Shtrikman, H.; Feldman, D.E.; Tamegai, T.; Kes, P.H.; Li, M.; Konczykowski, M.; et al. ‘Inverse’ melting of a vortex lattice. Nature
**2001**, 411, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wu, W.J.; He, Y.W.; Zhao, Z.G.; Liu, M.; Yang, Y.H. Inverse Melting of Vortex Lattice in Layered Superconductors. Int. J. Mod. Phys.
**2005**, 19, 451. [Google Scholar] [CrossRef] - Mukamel, S. Trees to trap photons. Nature
**1997**, 388, 425–427. [Google Scholar] [CrossRef] - Jiang, D.-L.; Aida, T. Photoisomerization in dendrimers by harvesting of low-energy photons. Nature
**1997**, 388, 454–456. [Google Scholar] [CrossRef] - Sergi, A.; Grüning, M.; Ferrario, M.; Buda, F. A Density Functional Study of the PYP Chromophore. J. Phys. Chem.
**2001**, 105, 4386. [Google Scholar] [CrossRef] - Zeng, B.; Chen, X.; Zhou, D.-L.; Wen, X.-G. Quantum Information Meets Quantum Matter. From Quantum Entanglement to Topological Phases of Many-Body Systems; Springer: New York, NY, USA, 2019. [Google Scholar]
- Deco, G.; Cruzata, J.; Cabral, J.; Tagliazucchi, E.; Laufs, H.; Logothetis, N.K.; Kringelbach, M.L. Awakening: Predicting external stimulation to force transitions between different brain states. Proc. Natl. Acad. Sci. USA
**2019**, 116, 18088. [Google Scholar] [CrossRef] [PubMed] [Green Version] - McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.
**1943**, 5, 115. [Google Scholar] [CrossRef] - Caianiello, E.R. Outline of a theory of thought-processes and thinking machines. J. Theor. Biol.
**1961**, 1, 204. [Google Scholar] [CrossRef] - Hodgikin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol.
**1952**, 117, 500. [Google Scholar] [CrossRef] - Catterall, W.A.; Indira, M.R.; Robinson, H.P.C.; Sejnowski, T.J.; Paulsen, O. The Hodgkin-Huxley Heritage: From Channels to Circuits. J. Neurosci.
**2012**, 32, 1406. [Google Scholar] [CrossRef] [Green Version] - Meunier, C.; Segev, I. Playing the Devil’s advocate: Is the Hodgkin–Huxley model useful? Trends Neurosci.
**2002**, 25, 558. [Google Scholar] [CrossRef] [PubMed] - Sadegh Zadeh, S.A.; Kambhampati, C. All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model. Int. J. Math. Comput. Sci.
**2017**, 11, 453. [Google Scholar] - Deng, B. Alternative Models to Hodgkin-Huxley Equations. Bull. Math. Biol.
**2017**, 79, 1390. [Google Scholar] [CrossRef] - Schmitt, F.O. Molecules and Memory. New Scientist
**1966**, 23, 643. [Google Scholar] - Arbib, M. Brain Machines and Mathematics; McGraw-Hill: London, UK, 1964. [Google Scholar]
- Agnati, L.F.; Marcoli, M.; Maura, G.; Woods, A.; Guidolin, D. The brain as a “hyper-network”: The key role of neural networkss as main producers of the integrated brain actions especially via the “broadcasted” neuroconnectomics. J. Neural. Transm.
**2018**, 125, 883. [Google Scholar] [CrossRef] - Santamaria, F.; Bower, J.M. Hodgkin–Huxley Models. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Amsterdam, The Netherland, 2009; pp. 1173–1180. [Google Scholar] [CrossRef]
- Strassberg, A.F.; DeFelice, L.J. Limitations of the Hodgkin-Huxley Formalism: Effects of Single Channel Kinetics on Transmembrane Voltage Dynamics. Neural Comput.
**1993**, 5, 843. [Google Scholar] [CrossRef] - Ganim, Z.; Tokmakov, A.; Vaziri, A. Vibrational excitons in ionophores: Experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels. New J. Phys.
**2011**, 13, 113030. [Google Scholar] [CrossRef] - Vaziri, A.; Plenio, M.B. Quantum coherence in ion channels: Resonances, transport and verification. New J. Phys.
**2011**, 12, 085001. [Google Scholar] [CrossRef] - Summhammer, J.; Salari, V.; Bernroider, G. A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels. J. Integr. Neurosci.
**2012**, 11, 123. [Google Scholar] [CrossRef] [Green Version] - Salari, V.; Tuszynski, J.; Rahnama, M.; Bernroider, G. Plausibility of quantum coherent states in biological systems. J. Phys. Conf. Ser.
**2011**, 306, 012075. [Google Scholar] [CrossRef] - Bernroider, G.; Summhammer, J. Can quantum entanglement between ion transition states affect action potential initiation? Cognit. Comput.
**2012**, 4, 29. [Google Scholar] [CrossRef] - Moradi, N.; Scholkmann, F.; Salari, V. A study of quantum mechanical probabilities in the classical Hodgkin-Huxley model. J. Integr. Neurosci.
**2015**, 14, 1. [Google Scholar] [CrossRef] - Romijn, H. Are virtual photon the elementary carriers of consciousness? J. Conscious. Study
**2002**, 9, 61–81. [Google Scholar] - Ròżyk-Myrta, A.; Brodziak, A.; Muc-Wierzgoǹ, M. Neural Circuits, Microtubule Processing, Brain’s Electromagnetic Field—Components of Self-Awareness. Brain Sci.
**2021**, 11, 984. [Google Scholar] [CrossRef] - Mahan, G.D. Many-Particle Physics; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Mattuck, R.D. A Guide to Feynman Diagrams in the Many-Body Problem; Dover: New York, NY, USA, 1992. [Google Scholar]
- Hameroff, S.R.; Watt, R.C. Information Processing in Microtubules. J. Theor. Biol.
**1982**, 98, 549. [Google Scholar] [CrossRef] - Smith, S.A.; Watt, R.C.; Hameroff, S.R. Cellular Automata In Cytoskeletal Lattices. Physica
**1984**, 10D, 168. [Google Scholar] [CrossRef] - Hameroff, S.R.; Smith, S.A.; Watt, R.C. Automaton Model of Dynamic Organization in Microtubules. Ann. N. Y. Acad. Sci.
**1986**, 446, 949. [Google Scholar] [CrossRef] - Rasmussen, S.; Karampurwala, H.; Vaidyanath, R.; Jensen, K.S.; Hameroff, S. Computational Connectionism Within Neurons: A Model Of Cytoskeletal Automata Subserving Neural Networks. Phys. D
**1990**, 42, 428. [Google Scholar] [CrossRef] - Lahoz-Beltra, R.; Hameroff, S.R.; Dayhoff, J.E. Cytoskeletal logic: A model for molecular computation via Boolean operations in microtubules and microtubule-associated proteins. BioSystems
**1993**, 29, 1. [Google Scholar] [CrossRef] - Dayhoff, J.; Hameroff, S.; Lahoz-Beltra, R.; Swenberg, C.E. Cytoskeletal involvement in neuronal learning: A review. Eur. Biophys. J.
**1994**, 23, 79. [Google Scholar] [CrossRef] - Kastner, R.E. The Transactional Interpretation of Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kastner, R.E. Understanding our unseen Reality: Solving Quantum Riddles; Imperial College Press: London, UK, 2015. [Google Scholar]
- Wick, D. The Infamous Boundary. Seven Decades of Controversy in Quantum Physics; Springer: Berlin, Germany, 1995. [Google Scholar]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Goodson, H.V.; Jonasson, E.M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol.
**2018**, 10, a022608. [Google Scholar] [CrossRef] [PubMed] - Steiner, B.; Mandelkow, E.-M.; Biernat, J.; Gustke, N.; Meyer, H.E.; Schmidt, B.; Mieskes, G.; Soling, H.D.; Drechsel, D.; Kirschner, M.W.; et al. Phosphorylation of microtubule-associated protein tau: Identification of the site for Ca
^{2+}-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tanglesa. EMBO J.**1990**, 9, 3539. [Google Scholar] [CrossRef] [PubMed] - Waxham, M.N. Calcium-Calmodulin Kinase II (CaMKII) in Learning and Memory. Encycl. Neurosci.
**2009**, 581–588. [Google Scholar] [CrossRef] - Baratier, J.; Peris, L.; Brocard, J.; Gory-Faurè, S.; Dufour, F.; Bosc, C.; Fourest-Lieuvin, A.; Blanchoin, L.; Salin, P.; Job, D.; et al. Phosphorylation of Microtubule-associated Protein STOP by Calmodulin Kinase II. J. Biol. Chem.
**2006**, 281, 19561. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Craddock, T.J.A.; Tuszynski, J.A.; Hameroff, S. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation? Comput. Biol.
**2012**, 8, e1002421. [Google Scholar] [CrossRef] [Green Version] - Vallano, M.L.; Goldenring, J.R.; Buckholz, T.M.; Larson, R.E.; Delorenzo, R.J. Separation of endogenous calmodulin- and cAMP-dependent kinases from microtubule preparations. Proc. Nad. Acad. Sci. USA
**1985**, 82, 3202. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gradin, H.M.; Marklund, U.; Larsson, N.; Chatila, T.A.; Gullberg, M. Regulation of Microtubule Dynamics by Ca21/Calmodulin-Dependent Kinase IV/Gr-Dependent Phosphorylation of Oncoprotein 18. Mol. Cell. Biol.
**1997**, 17, 3459. [Google Scholar] [CrossRef] [Green Version] - Schulman, H.; Kuret, J.; Jefferson, A.B.; Nose, P.S.; Spitzer, K.H. Ca
^{2+}/Calmodulin-Dependent Microtubule-Associated Protein 2 Kinase: Broad Substrate Specificity and Multifunctional Potential in Diverse Tissues. Biochemistry**1985**, 24, 5320. [Google Scholar] [CrossRef] - Craddock, T.J.A.; Kurian, P.; Tuszynski, J.A.; Hameroff, S.R. Quantum Processes in Neurophotonics and the Origin of Brain’s Spatiotemporal Hierarchy. In Neurophotonics and Biomedical Spectroscopy; Elsevier: Amsterdam, The Netherland, 2019; p. 189. [Google Scholar]
- Chang, J.-J.; Fisch, J.; Popp, F.-A. (Eds.) Biophotons; Springer: Dordrecht, Germany, 1998. [Google Scholar]
- Popp, F.-A.; Beloussov, L. (Eds.) Integrative Biophysics. Biophotonics; Springer: Dordrecht, Germany, 2003. [Google Scholar]
- Fels, D.; Cifra, M.; Scholkmann, F. (Eds.) Fields of the Cell; Research Signpost: Kerala, India, 2015. [Google Scholar]
- Kurian, P.; Obisesan, T.O.; Craddock, T.J.A. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease. J. Photochem. Photobiol. B Biol.
**2017**, 175, 109. [Google Scholar] [CrossRef] [PubMed] - Haken, H.; Strobl, G. An exactly solvable model for coherent and incoherent exciton motion. Z. Phys.
**1973**, 262, 135. [Google Scholar] [CrossRef] - Abasto, D.F.; Mohseni, M.; Lloyd, S.; Zanardi, P. Exciton diffusion length in complex quantum systems: The effect of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Phil. Trans. R. Soc. A
**2012**, 1972, 3750. [Google Scholar] [CrossRef] [PubMed] - Celardo, C.L.; Giusteri, G.G.; Borgonovi, F. Cooperative robustness to static disorder: Superradiance and localization in a nanoscale ring to model light-harvesting systems found in nature. Phys. Rev. B
**2014**, 90, 075113. [Google Scholar] [CrossRef] [Green Version] - Celardo, C.L.; Poli, P.; Lussardi, L.; Borgonovi, F. Cooperative robustness to dephasing: Single-exciton superradiance in a nanoscale ring to model light-harvesting systems. Phys. Rev. B
**2014**, 90, 085142. [Google Scholar] [CrossRef] [Green Version] - Kalra, A.P.; Benny, A.; Travis, S.M.; Zizzi, E.A.; Morales-Sanchez, A.; Oblinski, D.G.; Craddock, T.J.A.; Hameroff, S.R.; Maclever, M.B.; Tuszynski, J.A.; et al. Electronic Energy Migration in Microtubules. arXiv
**2022**, arXiv:2208.10628. Available online: https://arxiv.org/abs/2208.10628 (accessed on 9 January 2023). [CrossRef] - Veljkovic, V.; Veljkovic, N.; Esté, J.A.; Dietrich, U. Applicatiion of the EIIP/ISM Bionfomatics in Development of New Drugs. Curr. Med. Chem.
**2007**, 14, 133. [Google Scholar] [CrossRef] - Ricciardi, L.M.; Umezawa, H. Brain and Physics of Many-Body Problems. Kybernetik
**1967**, 4, 44–48. [Google Scholar] [CrossRef] - Umezawa, H.; Matsummoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North-Holland: Amsterdam, The Netherland, 1982. [Google Scholar]
- Umezawa, H. Advanced Field Theory. Micro Macro Thermal Physics; AIP: New York, NY, USA, 1995. [Google Scholar]
- Nambu, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev.
**1960**, 117, 648–663. [Google Scholar] [CrossRef] - Goldstone, J. Field Theories with Superconductor Solutions. Nuovo C.
**1961**, 19, 154–164. [Google Scholar] [CrossRef] [Green Version] - Goldstone, J.; Salam, A.; Weinberg, S. Broken Symmetries. Phys. Rev.
**1962**, 27, 965–970. [Google Scholar] - Flannery, J.S.; Riedel, M.C.; Bottenhorn, K.L.; Poudel, R.; Salo, T.; Hill-Bowen, L.D.; Laird, A.R.; Sutherland, M.T. Meta-analytic clustering dissociates brain activity and behavior profiles across reward processing paradigms. Cogn. Affect. Behav. Neurosci.
**2020**, 20, 215. [Google Scholar] [CrossRef] [PubMed] - Bhaduri, A.; Sandoval-Espinosa, C.; Otero-Garcia, M.; Oh, I.; Yin, R.; Eze, U.C.; Nowakowski, T.J.; Kriegstein, A.R. An atlas of cortical arealization identifies dynamic molecular signatures. Nature
**2021**, 598, 200. [Google Scholar] [CrossRef] - Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. A Quantum Field Theoretical Approach to the Collective Behaviour of Biological Systems. Nucl. Phys.
**1985**, B251, 375–400. [Google Scholar] [CrossRef] - Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Electromagnetic field and spontaneous symmetry breakdown in biological matter. Nucl. Phys.
**1986**, B275, 185–199. [Google Scholar] [CrossRef] - Del Giudice, E.; Vitiello, G. Preparata, G. Water as a free electron laser. Phys. Rev. Lett.
**1988**, 61, 1085–1088. [Google Scholar] [CrossRef] - Jibu, M.; Yasue, K. Quantum Brain Dynamics and Consciousness; John Benjamins: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Jibu, M.; Yasue, K. What Is Mind? Quantum Field Theory of Evanescent Photons in Brain as Quantum Theory of Consciousness. Informatica
**1997**, 21, 471. [Google Scholar] - Preparata, G. QED Coherence in Matter; World Scientific: Singapore, 1995. [Google Scholar]
- Ling, G.N. Life at the Cell and Below-Cell Level; Pacific Press: New York, NY, USA, 2001. [Google Scholar]
- Blasone, M.; Vitiello, G.; Jizba, P. Quantum Field Theory and its Macroscopic Manifestations. Boson Condensation, Ordered Patterns, and Topological Defects; Imperial College Press: London, UK, 2011. [Google Scholar]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Nonequilibrium quantum brain dynamics: Super-Radiance and Equilibration in 2+1 Dimensions. Entropy
**2019**, 21, 1066. [Google Scholar] [CrossRef] [Green Version] - Nishiyama, A.; Tuszynski, J.A. Non-Equilibrium Φ
^{4}theory for networks: Toward memory formations with quantum brain dynamics. J. Phys. Commun.**2019**, 3, 055020. [Google Scholar] [CrossRef] - Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Nonequilibrium quantum brain dynamics, Chap 5. Adv. Quantum Chem.
**2020**, 82, 159. [Google Scholar] - Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Non-Equilibrium Quantum Brain Dynamics II: Formulation in 3+1 Dimensions. Phys. A
**2021**, 567, 125706. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sergi, A.; Messina, A.; Vicario, C.M.; Martino, G.
A Quantum–Classical Model of Brain Dynamics. *Entropy* **2023**, *25*, 592.
https://doi.org/10.3390/e25040592

**AMA Style**

Sergi A, Messina A, Vicario CM, Martino G.
A Quantum–Classical Model of Brain Dynamics. *Entropy*. 2023; 25(4):592.
https://doi.org/10.3390/e25040592

**Chicago/Turabian Style**

Sergi, Alessandro, Antonino Messina, Carmelo M. Vicario, and Gabriella Martino.
2023. "A Quantum–Classical Model of Brain Dynamics" *Entropy* 25, no. 4: 592.
https://doi.org/10.3390/e25040592