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Abstract: Non-standard thermostatistical formalisms derived from generalizations of the Boltzmann–
Gibbs entropy have attracted considerable attention recently. Among the various proposals, the
one that has been most intensively studied, and most successfully applied to concrete problems
in physics and other areas, is the one associated with the Sq non-additive entropies. The Sq-based
thermostatistics exhibits a number of peculiar features that distinguish it from other generalizations
of the Boltzmann–Gibbs theory. In particular, there is a close connection between the Sq-canonical
distributions and the micro-canonical ensemble. The connection, first pointed out in 1994, has been
subsequently explored by several researchers, who elaborated this facet of the Sq-thermo-statistics
in a number of interesting directions. In the present work, we provide a brief review of some
highlights within this line of inquiry, focusing on micro-canonical scenarios leading to Sq-canonical
distributions. We consider works on the micro-canonical ensemble, including historical ones, where
the Sq-canonical distributions, although present, were not identified as such, and also more resent
works by researchers who explicitly investigated the Sq-micro-canonical connection.

Keywords: generalized entropies; micro-canonical ensemble; Sq non-additive entropies

1. Introduction

To speak about things, it is often useful to have names for them. Otherwise, one faces
a plight similar to that of Garcia Marquez’s celebrated Macondo characters, who lived
when “the world was so recent that many things lacked names, and in order to indicate them it
was necessary to point” [1]. One of the tasks of scientists is to identify and baptize things,
including abstract mathematical objects, that deserve to have a name. The probability
distributions, nowadays called q-exponentials and q-Gaussians (q-distributions, for short),
constitute nice illustrations of physically relevant mathematical objects that, for a long
time, lacked a deserved name. Since the very inception of statistical mechanics, the q-
distributions are discernible in the scientific literature. These distributions are closely
related to the micro-canonical ensemble, and are central to some standard derivations of the
Gibbs canonical probability distribution from the micro-canonical one. The relevance of the
q-distributions, however, remained unrecognized for more than a century. The unnoticed
distributions remained unnamed.

In 1988 Tsallis advanced a thermo-statistical formalism based on the non-additive
entropy Sq, characterized by the parameter q [2]. The new formalism soon attracted the
attention of a few adventurous theoreticians because of its mathematical elegance and its
physically appealing features. Then, after some concrete applications were identified in the
early and mid 1990s, research activity on the Sq-thermo-statistics increased dramatically,
and the field expanded in myriad new directions [3]. In particular, the connection with
the micro-canonical ensemble describing finite systems, discovered in 1994 [4], established
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a direct link between Tsallis theory and some basic ideas of statistical mechanics dating
from the very beginnings of this branch of physics. It became clear that the probability
distributions (or densities) optimizing the Sq entropy were already present in some early
works by the founding fathers of statistical mechanics, as well as in some modern textbooks.
Nowadays, those distributions, first identified as important in their own right by Tsallis in
1988, are endowed with well-deserved short, catchy names: q-exponentials and q-Gaussians
(the latter are special instances of the former).

The link between the micro-canonical ensemble and either the q-exponential or q-
Gaussians has been, since 1994, investigated by several researchers, from diverse points of
view. The aim of the present effort is to provide a brief review of this subject, summarizing
its historical background, and discussing recent developments.

This paper is organized in the following way. In Section 2, we describe briefly the Sq-
thermo-statistical formalism and the probability distributions that optimize the Sq entropy.
The basic connection between the Sq-thermostatistics and the micro-canonical ensemble is
reviewed and explained in Section 3. In Section 4, we provide some historical background,
on works prior to 1994, where the q-exponential related to the micro-canonical ensemble
can be identified. Recent developments on these matters are reviewed in Section 5. Finally,
some concluding remarks are given in Section 6.

2. Probability Distributions Optimizing the Sq Non-Additive Entropies

Generalizations of the maximum entropy principle based on non-standard en-
tropies [5–11] have been applied to the study of a variety of systems and processes in
physics and other fields, especially in relation to complex systems [3,12,13]. This line of en-
deavor started in earnest around the mid and late 1990s, stimulated, to a large extent, by the
early applications of a generalized thermostatistics advanced by Tsallis in 1988. Within the
Tsallis proposal, the canonical probability distributions arise from the optimization of the
Sq non-additive entropies [2]. The Sq-based thermostatistics has been applied successfully
to diverse fields, including physics, astronomy, and biology, among various others [14–19].
Of all the thermo-statistics derived from generalized entropic forms, the thermo-statistics
associated with the Sq entropies has been the one that attracted more attention and the one
that generated the largest and most diverse set of fruitful applications. In this section, we
shall briefly review the main features of the Sq-thermo-statistics.

The Sq-thermo-statistics is derived from the non-additive, entropy Sq [3] which is
given by the expression

Sq =
k

q− 1

W
∑
i=1

(
pi − pq

i

)
, (1)

where the parameter q determines the degree of non-additivity exhibited by the entropy, the
constant k determines both the dimensions and the units in which the entropy is measured,
and {pi, i = 1, . . . ,W} constitutes a set of normalized probabilities associated with a
system that has W microstates. Here, we assume that k = 1. In the limit q → 1, the
standard Boltzmann–Gibbs entropy is recovered: S1 = −k ∑Wi=1 pi ln pi = SBG. Central to
the Sq thermo-statistical formalism are the q-logarithm and the q-exponential functions.
The q-logarithm is defined as

lnq(x) =
1− x1−q

q− 1
, (2)

and its inverse function, the q-exponential, is given by

expq(x) = [1 + (1− q)x]
1

1−q
+ , (3)

where

[1 + (1− q)x]
1

1−q
+ =

{
[1 + (1− q)x]

1
1−q , if 1 + (1− q)x > 0 ,

0 , if 1 + (1− q)x ≤ 0 .
(4)
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The q-logarithm and the q-exponential functions are inextricably linked to the con-
strained optimization of the Sq entropies [3]. It is worth mentioning that the Sq entropy
itself can be expressed in terms of q-logarithms,

Sq = k
W
∑
i=1

pi lnq(1/pi) = k
〈

lnq(1/pi)
〉

. (5)

In the limit q → 1, the above expression coincides with the well-known one,
SBG = k ∑Wi=1 pi ln(1/pi).

The Sq thermo-statistics revolves around the optimization of the entropic form Sq
under appropriate constraints. The concomitant variational problem can be formulated in
terms of standard linear constraints, or in terms of power-law nonlinear constraints related
to escort distributions [3]. For our present purposes, which are to consider some connections
between the Sq formalism and the micro-canonical ensemble, it is convenient to consider
standard linear constraints. The use of linear constraints also makes it easier to consider
more general entropic functionals, for which it is still not well understood what type of
escort mean values should be used. Sq-based canonical probability distribution is obtained
when the Sq entropy is optimized under the constraints imposed by normalization,

W
∑
i=1

pi = 1, (6)

and by the system’s mean energy. If the ith microstate of the system has energy εi and
probability pi, the mean energy is given by

E =
W
∑
i=1

pi εi. (7)

We assume that the energies of the system are bounded from below, and that for all
states, εi ≥ 0. The optimization of the entropy Sq under the constraints (6) and (7) leads to

δ
[
Sq − α

(
W

∑
i=1

pi

)
− βE

]
= 0, (8)

where α and β are the Lagrange multipliers associated with the constraints of normaliza-
tion (6) and the mean energy (7). It follows from (8) that

pq−1
i =

1
q

[
1 − (q− 1)(α + βεi)

]
, (9)

and

pi =

(
1
q

) 1
q−1 [

1 − (q− 1)(α + βεi)
] 1

q−1

+
, (10)

which constitutes the Sq-canonical probability distribution. The probabilities (10) can be
recast as

pi = C
[
1 − (q− 1)β̃εi)

] 1
q−1

+
, (11)

where C =
[(

1
q

)
β

1− (q−1)α

] 1
q−1 and β̃ = β

1− (q−1)α . Expression (11) for the Sq-canonical
probabilities coincides with the one obtained by Tsallis in his seminal paper of 1988 [2]
(compare (11) with Equation (12) from [2], making the identifications β̃→ β and C → 1/Zq).
In what follows, we shall use expression (11), focusing on scenarios satisfying q > 1 and
β̃ > 0, which, as we shall see, are related to the micro-canonical ensemble. It is also worth
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emphasizing that the probabilities (11) can be expressed in the standard q-exponential
form, as

pi = C expq̃

[
−β̃εi

]
, (12)

where
q̃ = 2− q. (13)

That is, the expression (11) constitutes just a particular way of parameterizing a q-
exponential probability distribution. Since, as we already explained, we are going to use
the parameterization (11), all the q-values mentioned in this review correspond to this
parameterization. In order to compare our q-values with those of the authors, who use
the parameterization (12), one has to apply the relation (13). In what follows, when we
use (11) or (12), we shall drop the tilde from β̃. When deriving (11), we considered a set of
discrete energy levels. In the case of classical Hamiltonian systems with a Hamiltonian H
and continuous phase space, the optimization of the Sq entropy under the normalization
and mean energy constraints leads to a phase space Sq-canonical probability density of
the form

F (ω) = C
[
1 − (q− 1)βH(ω)

] 1
q−1

+
, (14)

where ω = (qi, q2, . . . ; p1, p2, . . .) denotes the set of generalized coordinates and
conjugate momenta.

3. The Micro-Canonical Path towards the Sq-Canonical Distribution

Now, we shall review how the Sq canonical distribution can arise from the micro-
canonical ensemble. We shall consider a composite system A + B consisting of two weakly
coupled subsystems A and B. The subsystem A has energy levels εi, i = 1, 2, . . .. The
“total” system A + B is described by the Gibbs micro-canonical ensemble, and has a total
energy lying in the interval (ET − ∆, ET + ∆) with ∆ << ET . The level distribution of
subsystem B is assumed to be quasi-continuous. Under these assumptions, it is possible to
show that, if the number of states of system B having energies less or equal to E grows as a
power of E, then the marginal probability distribution associated with subsystem A has the
same form as the Sq-canonical distribution (11) (or, equivalently, as (12)).

The proof of the above statement is based on the fact that the probability pi of finding
the system A in a particular state i with energy i is proportional to the total number ν of
configurations of the complete system A + B that are compatible with the state of affairs.
In order to determine ν, we introduce the assumption, already mentioned, that the number
N (E) of states of system B having energies less or equal to E complies with the power law,

N (E) ∝ Eη , (15)

The above power law implies that the number of states of system B having energies
within the range (E− ∆, E + ∆) is proportional to

2∆Eη−1, (16)

from which it follows that the number ν of configurations of the total system A + B
compatible with finding A in a state with energy εi satisfies,

ν ∝ (ET − εi)
η−1. (17)

It is plain from the above relation that the probabilities pi to find the system A is in its
different states i = 1, 2, . . ., comply with

pi
pj

=
(ET − εi)

η−1

(ET − εj)η−1 =
[1− (εi/ET)]

η−1

[1− (εi/ET)]η−1 . (18)
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After introducing a normalization factor C, defined by the relation

C−1 = ∑
i
[1− (εi/ET)]

η−1, (19)

the probabilities pi, associated with the states of system A, can be finally cast as

pi = C [1− (εi/ET)]
η−1. (20)

Setting now

q =
η

η − 1
, (21)

and
β =

η − 1
ET

, (22)

it follows that the marginal probability distribution describing the system A has the same
form as the Sq-canonical distribution, given by (11) (or, alternatively, by (12)).

The main assumptions made in the above arguments can be summarized as follows:

• We have two weakly interacting systems, A and B, jointly described by the micro-
canonical ensemble.

• The energy level distribution of subsystem B is quasi-continuous, and the number of
states of system B with energy less than or equal to E grows as a power Eη .

Some comments are in order with regards to the second assumption. First, systems
complying with that assumption are not rare. Systems such that the number of states grows
with a power η of the system’s energy can be realized in a number of ways. Particular
examples are the following: a system B consisting of N quantum harmonic oscillators,
for which one has η = N; a set of N free non-relativistic quantum particles moving in a
D-dimensional box, for which η = DN/2; and a system of N rigid, quantum plane rotators,
for which η = N/2. As can be appreciated in these examples, in order to exhibit the desired
behavior, B has to be finite. If one interprets B as a heat bath, it follows that one of the
physical scenarios leading to the Sq-canonical distribution is the one corresponding to
systems in equilibrium with a finite heath bath. This is, indeed, a sensible interpretation.
The finite-bath interpretation is not, however, essential for our present purposes, and
we shall not emphasize it. In order to establish the connection between the Sq-canonical
distribution and the micro-canonical ensemble, it is enough to consider a system consisting
of two weakly coupled subsystems, in which one of the subsystems (our system B) is such
that the number of states grows as a power of energy.

Notice that in all the above-mentioned instances of a system B for which the number
of states depends on E according to the appropriate power-law behavior, the exponent
η is proportional to the number N of constituents of B. If one lets N → ∞ and ET → ∞,
keeping the quotient ET/N constant, one also has η → ∞, with η/ET constant. It can be
verified that, if one takes that limit, then q goes to unity, and the probability distribution
associated with system A becomes the standard canonical exponential one,

pi =
1
Z

exp(−βεi), (23)

where
Z = ∑

i
exp(−βεi). (24)

If B is interpreted as an infinite heath bath (resulting from taking the thermodynamic
limit N → ∞ and ET → ∞), the above argument is, essentially, the one provided in
many textbooks in order to derive the Gibbs canonical distribution (23). In particular, this
is the case in Feynman’s celebrated lectures on statistical mechanics [20] (for instance,
q-distributions are clearly identifiable in page 4 of [20], although they are not explicitly
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parameterized, nor referred to, as “q-distributions”, nor are they, for that matter, given
any specific name). The q-distributions appear and play a central role in these derivations,
although this fact usually remains unnoticed because the connection with the Sq-based ther-
mostatistics is not recognized. Since 1994, the connection between the sq-thermo-statistics
and the micro-canonical ensemble has been investigated by several researchers. Baranger,
an outstanding contributor to Sq-thermo-statistics, and an influential commentator on
the field [3], hailed the Sq-canonical-micro-canonical connection as a key ingredient in
answering the question “Why Tsallis Statistics?”. In a paper published in 2002, Baranger
re-visited the argument advanced in [4] and made the bold conjecture that the argument
may be extended beyond equilibrium scenarios, helping to explain the phenomenological
success of Tsallis statistics in describing diverse non-equilibrium situations [21]. Baranger
suggested that, during an out-of-equilibrium process, a subsystem may interact with a
finite number of effective degrees of freedom of the rest of the system, establishing a
quasi-equilibrium situation described by the Sq-statistics.

Our previous arguments were formulated in terms of systems having discrete energy
levels. The main arguments, however, are still valid if one considers classical Hamiltonian
systems with a continuous phase space. Let us consider a classical composite system
A + B, consisting of two weakly interacting subsystems, governed by a Hamiltonian
H = HA(ωA) + HB(ωB), where ωA denotes the set of canonical phase-space variables
describing the state of system A, and ωB stands for the set of variables describing the
state of system B. Let us assume that the volume ΦB(E) in the phase space of system B,
corresponding to HB(ωB) ≤ E, is proportional to a power η of E. That is,

ΦB(E) =
∫

H(ωB)≤E

dωB ∝ Eη , (25)

where dωB denotes the volume element in the phase space of system B. If the condition (25)
is satisfied, one can follow essentially the same argument as before, and reach a similar
conclusion: if the composite system A + B is described by the micro-canonical ensemble
with total energy ET , then the marginal probability density corresponding to system A has
the Sq-canonical form

FA(ωA) = C
[
1 − (q− 1)βHA(ωA)

] 1
q−1

+
, (26)

where C is an appropriate normalization constant, and q and β are related to η and ET
through Equations (21) and (22). Note that the above setting is applicable even in situations
in which A and B do not, strictly speaking, represent subsystems of a Hamiltonian system.
The above results are also applicable when A denotes a subset of the canonical variables
characterizing the system, B denotes the remaining canonical variables, and the total
Hamiltonian can be separated as H = HA + HB, with the term HA depending only on the
variables associated with A, the term HB only on the variables associated with B. Then, if
one assumes that the total system is in the micro-canonical ensemble, and that the volume
ΦB(E) of the region determined by HB ≤ E (the volume ΦB(E) is computed with respect
to the set of canonical variables associated with B) grows as a power η of E, the marginal
probability distribution for the canonical variables in A has the Sq-canonical shape (26). As
an example, we can consider a classical Hamiltonian system in which the kinetic energy is
a homogeneous quadratic function of the momenta, and does depend on the configuration
coordinates. If A denotes the n configuration coordinates of the system, and B denotes the
set of n momenta, then one has that ΦB(E) ∝ En/2. Consequently, if the system is described
by the micro-canonical ensemble, the marginal probability density for the configuration
coordinates is proportional to [1− (V/ET)]

n
2−1, where V is the system’s potential energy,

and ET is the total energy (here, V plays the role of HA). We see that the configuration
probability density is a q-exponential with q = n/(n − 2). As we shall see in the next
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section, this scenario was already discussed by Maxwell in 1879, although the connection
with the Sq-statistics was not recognized at the time.

A paradigmatic scenario (closely related to the previous example) leading to the Sq-
canonical distribution (26) is given by a composite classical Hamiltonian system A + B,
where the subsystem B consists of N free particles of mass m moving in a D-dimensional
box (that is, B is a D-dimensional finite classical ideal gas). In such a case, one can see
that the volume ΦB(E) given by (26), is proportional to the volume of a ND-dimensional
hyper-sphere of radius E1/2. That is,

ΦB(E) ∝ END/2. (27)

Therefore, the power η is equal to ND/2. It then follows that, if the composite A + B
is jointly described by the micro-canonical ensemble with total energy ET , the probability
density FA(ωA) associated with subsystem A is proportional to

[
1− HA

ET

]η−1
=

[
1− HA

ET

] ND−2
2

. (28)

The density FA(ωA) is thus of the Sq-canonical form (26), with the q-index given
by (21), yielding,

q =
η

η − 1
=

ND
ND− 2

(29)

As already mentioned, the early successes of the Sq theory motivated the exploration of
alternative thermostatistical frames based on other entropic forms, and also the comparative
investigation of the structural features exhibited by general entropic variational principles.
The aim of these latter endeavors was to clarify which are the properties that are shared
by large families of entropies, or even that are universal, and, on the other hand, which
are the distinguishing properties that characterize particular entropies, such as the Sq ones.
Diverse aspects of entropy optimization principles were investigated in this regard. See, for
instance [22,23] and references therein. Within this context, it is natural to ask whether the
connection with the micro-canonical ensemble is a specific feature of the Sq-thermostatistics
or, on the contrary, is a feature shared by larger families of thermo-statistical formalisms.
It is clear, on the one hand, that the connection with the Sq-thermostatistics arises from
the power law behavior of the function N (E) (Equation (15)) describing the number of
states of system B with energies less or equal E. If the function N (E) associated with B
does not exhibit a power-law behavior, the probability distribution describing the system
A will not be Sq-canonical. It will have a different form, which may be interpreted as
optimizing an entropic measure different from Sq. In that sense, the link with the micro-
canonical ensemble may be shared by other entropies. On the other hand, systems whose
energy levels (or phase-space volumes) do exhibit the appropriate power-law behavior,
and consequently lead to Sq-canonical distributions, are not rare in nature. As we shall
see in the following sections, scenarios in which the Sq-canonical distribution arises from
the micro-canonical ensemble have been discovered and investigated by many researchers,
including some of the pioneers of statistical mechanics. This situation, not shared by other
generalized entropies, suggests that there may be, perhaps, something unique to the link
between the Sq-thermostatistics and the micro-canonical ensemble.

4. When q-Exponentials Lacked a Name: From Maxwell to the Mid 1990s

Interesting examples of q-exponential distributions can already be identified in one of
Maxwell’s pioneering works on statistical mechanics, his celebrated paper “On Boltzmann’s
Theorem on the Average Distribution of Energy in a System of Material Points”, published
in 1879 [24] (the paper can also be found in Maxwell’s collected scientific works [25]).
In this paper, Maxwell developed a statistical treatment for the dynamics of a closed
system of interacting particles having a constant total energy. Maxwell considered a large
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number of copies of the system, distributed uniformly on a phase-space hyper-surface
of constant energy. In essence, Maxwell’s idea was to describe the system by recourse
to what, in modern parlance, we now call the micro-canonical ensemble. In Equation
(41) of [24], Maxwell determined that “the number of systems whose configuration is
specified by the variables b1, . . . , bn while the momenta may have any values consistent
with the equation of energy” (in Maxwell’s notation b1, . . . , bn denotes the complete set
of configuration coordinates) [24]. In other words, Equation (41) of Maxwell’s paper
corresponds to the marginal distribution in configuration space, obtained from the micro-
canonical ensemble after tracing over the particles’ momenta. Maxwell proved that the
distribution in configuration space is proportional to

(E−V)
n−2

2 , (30)

where E is the system’s total energy, and V(b1, . . . , bn) is the the system’s total potential
energy. If the potential energy is bounded from below, we can choose the zero of energy in
such a way that E, V > 0. The configuration density F (b1, . . . , bn) can then be written as

F (b1, . . . , bn) = C
(

1− V(b1, . . . , bn)

E

) n−2
2

, (31)

which is clearly a q-exponential of the potential energy V, with a q index given by

q =
n

n− 2
. (32)

It goes without saying that Maxwell himself, working a century before Tsallis, did not
identify the configuration density as a q-exponential.

As already emphasized, q-distributions play an important role in many textbooks’
derivation of the Gibbs canonical distribution [20]. They can also be found in some remark-
able works from the 1990s on the micro-canonical approach to finite classical Hamiltonian
systems [26,27], although in none of these works were the q-distributions identified as such,
nor was their connection with the Sq-thermo-statistics discussed.

In [26], the authors investigate the micro-canonical approach to classical systems
consisting of a small number of particles. The authors point out that the momentum
distribution of small systems described by the micro-canonical ensemble is non-Maxwellian.
The authors prove that the single-particle momentum distribution (see Equation (12) of [26])
is of the form,

F (p) = C
[

1− p2

2mE

][D(N−1)−2]/2

, (33)

where m is the mass of one particle, p is the momentum of one particle, E is the total energy
of the system, N is the number pf particles in the system, and D is the dimensionality of
space (in references [26,27] the authors refer to the spatial dimension as f , but we denote it
by D, consistently with the rest of this review). The momentum distribution (33) is clearly
a q-Gaussian with

q = 1 +
D(N − 1)− 2

2
. (34)

In their derivation of the single-particle momentum distribution (33), the authors use,
as an intermediate step, the configuration distribution (30) discussed by Maxwell in [24].
As a matter of fact, the developments reported in [26] can, to some extent, be regarded as
an interesting re-formulation and elaboration, from a modern point of view, of ideas that
were already implicit in Maxwell’s seminal paper.

In [27], the authors provide a nice detailed discussion of the micro-canonical approach
to a classical ideal gas in a uniform gravitational field confined to a D-dimensional vessel.
As in reference [26], the system considered by the authors of [27] is assumed to have a finite
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number N particles and a total energy E. Its single-particle distribution, which is provided
in Equation (10) of [27], is proportional to

(
1− p2

2mE
− mgz

E

)[(D/2)+1]N−[(D/2)+2]

, (35)

where m is the mass of a particle, p is the momentum of a particle, and z > 0 denotes the
height of particle measured from the bottom of the vessel. As a consequence of the above
result, the single-particle distribution can then be expressed as

F (z, p) = C
[
1− ε

E

][(D/2)+1]N−[(D/2)+2]
, (36)

where C is an appropriate normalization constant and

ε =
p2

2m
+ mgz (37)

is the single-particle energy. The distribution (36) has the Sq-canonical form. It is a q-
exponential in the single-particle energy ε, with the q parameter given by

q = 1 + {[(D/2) + 1]N − [(D/2) + 2]}−1 (38)

The single-particle distributions studied in [26,27] fit into the general picture described
in the previous section if one identifies system A with one of the system’s particles, and
system B with the remaining N − 1 particles.

5. The Many Facets of the Sq-Statistics-Micro-Canonical Connection

The connection between the micro-canonical ensemble and the q-exponentials and
q-Gaussians for finite systems has been analyzed and discussed by several researchers,
expanding this venue of inquiry into various interesting directions [28–42]. In this section,
we shall review the main developments along these lines. We shall restrict our discussion
to works centered on the Sq-canonical-micro-canonical relation per se, focusing on how
the q-distributions arise from such a relation. Some of these works are presented in terms
of finite or small heat bathes, but they contribute to our main concern here: how the
q-distributions originate from micro-canonical scenarios. We shall not discuss works revolv-
ing around interpretative issues related to the finite-bath approach. Those constitute, no
doubt, interesting and relevant efforts, but they are outside the scope of our present review.

The most powerful formulation of the micro-canonical approach to the Sq-thermostatistics
for finite classical Hamiltonian systems with a continuous phase space is, arguably, the one
advanced by Adib, Moreira, Andrade Jr, and Almeida (AMAA) in [29]. In terms of our
discussion in Section 3, the main ideas in [29] can be interpreted as follows. Let us consider
a finite classical system with a Hamiltonian that can be expressed as

H = HA(ωA) +
J

∑
k=1

Hk(ωk), (39)

where each of the terms HA, H1, . . . , HJ , depends on a different subset of canonical variables.
The term HA of the Hamiltonian depends on the subset ωA of canonical variables, and each
term Hk (1 ≤ k ≤ J) depends on the subset ωk. Each of the system’s canonical variables
belongs to one and only one of the subsets {ωA, ω1, . . . , ωJ}. Let us assume that each of the
terms Hk (1 ≤ k ≤ J) depends on nk canonical variables (the set ωk has nk components)
and is a homogeneous function of degree lk. That is, if

ωk = (z(k)1 , . . . , z(k)nk ), k = 1, . . . , J (40)
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is the set of nk canonical variables z(k)nk on which Hk depends, one has,

Hk(λωk) = Hk(λz(k)1 , . . . , λz(k)nk ),
= λlk Hk(ωk), k = 1, . . . , J. (41)

Let ωA = (z(A)
1 , . . . , z(A)

nA ) stand for the set of canonical variables on which the term HA
depends. Then, the total number of canonical variables describing the complete system, is
nt = nA + ∑J

k=1 nk. The above requirements define a class of classical Hamiltonian systems
that admits, as particular instances, concrete systems of practical relevance in Physics.
For instance, the Hamiltonian corresponding to a system of N interacting classical point
particles in D dimensions can be cast in the form (39), if one identifies the subset ωA with
the complete set of ND configuration coordinates, and the subset ω1 with the complete
set of ND components of momenta. In this example, one has J = 1, n1 = ND, and l1 = 2.
Other concrete examples will be mentioned later.

Under the above assumptions, the authors of [29] proved that, if the complete system is
described by the micro-canonical distribution, then the marginal distribution corresponding
to the variables ωA has the Sq-canonical form. Let us take a closer look at this result from
the view point of the general argument outlined in Section 3. Let us define HB as

HB(ω1, . . . , ωJ) =
J

∑
k=1

Hk(ωk), (42)

and consider the volume ΦB(E) in the space characterized by the set of variables (ω1, . . . , ωk),
for which HB ≤ E. We have

ΦB(E) =
∫

HB(ω1,...,ωJ)≤E

dω1 . . . dωJ , (43)

where
dωk = dz(k)1 . . . dz(k)nk , k = 1, . . . , J. (44)

Given a value E of the total energy and a reference value E0, let us choose a set of
dimensionless parameters λk in such a way that

λk =

(
E
E0

)1/lk
, k = 1, . . . , J. (45)

We then have, taking into account the homogeneity of the Hks, that

Hk(λkωk)

Hk(ωk)
= λ

lk
k =

E
E0

, k = 1, . . . , J, (46)

which implies that

ΦB(E) =
∫

HB(ω1,...,ωJ)≤E

dω1 . . . dωJ

=

(
J

∏
k=1

λ
nk
k

) ∫
HB(ω

′
1,...,ω′J)≤E0

dω′1 . . . dω′J

=

(
J

∏
k=1

λ
nk
k

)
ΦB(E0)

=

(
E
E0

)∑J
k=1(nk/lk)

ΦB(E0). (47)
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We then see that the volume ΦB(E) grows as a power of E,

ΦB(E) = ΦB(E0)

(
E
E0

)η

, (48)

with

η =
J

∑
k=1

nk
lk

. (49)

One is then precisely within the scenario discussed in Section 3, from which it fol-
lows that the marginal probability density corresponding to the variables ωA is of the Sq
canonical form

F (ωA) = C
[

1− HA(ωA)

ET

] 1
q−1

, (50)

where ET is the total energy of the system, and

q =
η

η − 1
= 1 +

[(
J

∑
k=1

nk
lk

)
− 1

]−1

. (51)

All the examples discussed in the previous section can be analyzed in terms of the
AMAA formulation. In the systems discussed in [26,27], one has to identify the subsystem
A with one particle of the system, and the subsystem B with the remaining N − 1 particles.
In the case discussed in [26], one has J = 1, n1 = D(N − 1), and l1 = 2. Then, (49) and (51)
determine the values of η and q, and the latter coincides with (34). In the case discussed
in [27], one has J = 2, n1 = D(N − 1), n2 = N − 1, l1 = 2, and l2 = 1. Then, from (49)
and (51), one obtains the same value of q as (38).

Remarkably, AMAA performed numerical experiments on a system consisting of a
chain of anharmonic oscillators, described by the Hamiltonian,

H =
N

∑
i=1

p2
i

2
+

N

∑
i=1

q4
i

2
+

N

∑
i=1

(qi+1 − qi)
4

4
, (52)

where qi and pi (i = 1, . . . , N are the coordinates and momenta of the N particles in the
system. The chain of anharmonic oscillators governed by the Hamiltonian (52) was inspired
by the celebrated Fermi–Pasta–Ulam system. The Hamiltonian (52) has the form (39). For
instance, if one identifies the set ωA with the set of N momenta, and the set ω1 with the
set of N coordinates (we then have J = 1, n1 = N and l1 = 4), it follows that the marginal
probability distribution corresponding to the momenta will be a q-exponential, provided
that the system is described by the micro-canonical ensemble. The numerical experiments
conducted by AMAA, based on the numerical integration of the canonical equations of
motion, confirmed that the micro-canonical description is in this case appropriate, and that
the probability distribution of the momenta is indeed q-exponential [29]. The numerical
experiments reported by AMAA are of considerable relevance because they provide a
concrete example of a highly nonlinear system, exhibiting complex dynamics, for which
the micro-canonical path toward the Sq-canonical distributions is explicitly verified.

In [32], Hanel and Thurner provide a clever analysis of the general conditions under
which micro-canonical scenarios in classical statistical mechanics naturally lead to power-
law distributions of the q-exponential type. In [33], Naudts and Baeten point out that
the configuration probability density of a classical gas always has the Sq-canonical form.
Therefore, the authors establish the connection between this scenario and the Sq-thermo-
statistics. The authors explore various aspects of this problem, and discuss the possible
role of Renyi entropy (which, once optimized, shields the same probability distributions as
Tsallis entropy, although parameterized in a different way).
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In [34], Bagci and Oikonomou explore interesting aspects of the micro-canonical setting
associated with a classical Hamiltonian system interacting with a finite heat bath. These
authors focus on how different assumptions on the heat capacity of the bath lead to different
versions of the Sq-canonical distribution. The authors reach the conclusions that a finite
bath with positive heat capacity leads to q-exponentials with compact support (that is, with
a cut-off), while a heat bath with negative heat capacity leads to q-exponentials with fat
tails. Within the present review, we restrict our discussion to micro-canonical scenarios
generating q-exponentials with a cut-off. We find, however, that Bagci and Oikonomuu’s
analysis of situations with finite baths of negative heat capacity is intriguing and worthy
of further consideration. In [35], Ramshaw re-visits the micro-canonical treatment of a
system in contact with a finite heat bath. The author analyzes the concomitant deviations
of the system’s probability distribution from the exponential Boltzmann–Gibbs one. The
author’s analysis confirms that, under appropriate conditions, probability distributions of
the Sq-canonical form are obtained. The author suggests that, although the Sq entropy may
play a direct role here, the presence of q-exponentials is not in itself enough to establish
that that is the case. There may be something to the author’s point of view. This is an
issue that certainly deserves further investigation. In [36], Biró, Barnafl̈di, and Ván apply
the Sq-micro-canonical connection to the analysis of some aspects of the physics of the
quark–gluon plasma and to the interpretation of experimental data on heavy ion collisions.
An intriguing extension of these matters to complex values of the Tsallis parameter q is
discussed by Wilk and Wlodarczyk in [37].

In [38], Lima and Deppman re-visit the micro-canonical approach to an ideal gas
constituted by a finite number N of particles and provide a detailed analysis of its relation
with the Sq-based thermostatistics. The authors investigate in detail how, as N → ∞,
the standard Boltzmann–Gibbs scenario is approached. In particular, they compute the
two-particle correlation function and study how the amount of correlation decreases as one
considers an increasing number of particles in the system. The micro-canonical ensemble
for an ideal gas with a finite number of molecules is also considered by Shim in [39], where
the Sq-canonical shape of the single-particle distribution is also investigated.

6. Conclusions

A growing number of generalizations of the concept of entropy are nowadays attract-
ing the attention of scientists. Researchers are actively exploring diverse applications of
these ideas, particularly in connection with entropic optimization methods. To a large
extent, this broad field of inquiry got its initial inspiration in the Sq-thermostatistics ad-
vanced by Tsallis in 1988. The non-additive Sq entropies still play a distinguished role
within the zoo of generalized entropies. Among the different distributions optimizing
non-standard entropies, those optimizing the Sq measures are the ones that provide useful
descriptions for the largest number of scenarios in physics and elsewhere. It is, therefore,
imperative, in order to explain this state of affairs, to study in detail the particular features
of the Sq-thermo-statistics that make it so special. The present review dealt with one of
these distinguishing features: the remarkable connection between the Sq-thermostatistics
and the micro-canonical ensemble. This connection is nowadays generally acknowledged
as constituting the basis of an important mechanism generating Sq-optimizing distributions
in physical systems. For instance, the significance of the fact that “research showed that
finite ideal gas followed q-exponential distributions” [40], was recently highlighted by
Deppman, a leading researcher in nuclear and particle physics, and in the application of
Tsallis’ non-extensive statistics to these fields. Deppman and collaborators advanced an
interesting theoretical framework, based on the concept of thermofractals, for the study of
systems that exhibit a finite effective number of degrees of freedom, independently of the
system’s size [41]. This scenario, which leads to a description similar to the micro-canonical
one, generating q-distributions even for large systems, has been applied to problems in
high-energy physics [41].
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In spite of the considerable amount of research that has been devoted to investigate
the micro-canonical approach to the Sq-canonical ensemble, we believe that the study
of this aspect of Sq-thermostatistics is still in its infancy. There is still much work to be
done, particularly in order to establish links between the micro-canonical setting and other
facets of Sq-thermostatistics. In this regard, it would be interesting to explore Baranger’s
conjecture that the micro-canonical approach may be relevant to explain the emergence of
Sq-thermo-statistics within non-equilibrium scenarios [21]. A promising first step in this
direction was taken by Megias, Lima, and Deppman in [42], where the authors consider
transport phenomena on the light of the connection between the Sq-thermostatstical and
the micro-canonical setting. Another issue that deserves further scrutiny is the connec-
tion of the entropy functional Sq itself with the micro-canonical setting. Up to now, the
main theoretical indication of a connection between the Sq-based thermostatistics and the
micro-canonical scenario is based on the presence of the q-distributions, rather than on
a more direct connection with the Sq functional itself. The presence of q-distributions is
generally construed, by a large part of the research community, as evidence for the Sq-based
thermostatistics. This is the case not only with regards to the micro-canonical scenarios
but also within more general contexts. In particular, most of the empirical evidence for
the Sq-thermostatistics rests on the experimental observation of q-distributions [17,19].
This situation is not surprising since the distributions that describe a system are more
amenable of experimental or observational investigation than an entropic functional. The
fact that probability distributions optimizing a particular functional, the Sq entropy, appear
so frequently, both in theoretical models and in experimental settings, strongly suggests
that the Sq entropy is playing an important role. This is consistent with the general notion
that variational principles provide the most fundamental description of physical systems
or processes. It is significant, in this regard, that even researchers who doubt that the Sq-
based optimization principle is the correct explanation for the presence of q-distributions,
nevertheless entertain the idea that an alternative variational principle may be at work. For
instance, Ramshaw recently observed that the non-exponential distributions describing
subsystems in micro-canonical contexts, can be derived from an entropy-optimization
prescription if one, instead of changing the entropic form, replaces the standard energy
constraint by an adroitly chosen non-linear generalization [43]. Ramshaw’s proposal is
intriguing, and certainly deserves further consideration. It nicely illustrates the belief of
many theoreticians that the identification of an appropriate entropic variational principle
leading to the non-exponential distributions observed on micro-canonical scenarios will
contribute to achieving a deep understanding of these distributions. Among the proposals
that have been advanced in this respect, the one based on the Sq-entropy has been, so far,
the most actively investigated, as attested by the works reviewed here.

The Sq canonical distributions, which exhibit the q-exponential (or, in particular cases,
are q-Gaussian) form, arise naturally as marginal probability distributions describing parts
of systems represented by the micro-canonical ensemble. In this regard, the q-distributions
can be identified in some works dating from the very beginnings of statistical mechanics.
They have also been appearing, along the years, in papers’ and textbooks’ discussions on
the micro-canonical ensemble. The relevance of these ubiquitous distributions, however,
was for a long time unrecognized. Until the development of the Sq thermo-statistics, they
lacked a name. The significance of their relationship with the micro-canonical ensemble,
which links them to the origins and history of statistical mechanics, has been highlighted
in recent times by the research efforts conducted by several scientists, who explored its
interesting and manifold implications. Intriguing results along these lines continue to
appear. What new developments the future will bring, we cannot tell. However, we can
be sure of one thing: like Holly’s cat in Breakfast at Tiffany’s [44], these long-neglected
distributions finally got a name, and the name is here to stay.
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