# What Is Heat? Can Heat Capacities Be Negative?

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Deficiencies of Bulk Thermodynamics

_{2}obviously shows near-negligible attraction.

## 3. The Self-Gravitating System of the Universe and Atomic Nanoclusters: Do Negative Heat Capacities Exist?

## 4. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## References

- Esq, J.P.J. XXXII. On the calorific effects of magneto-electricity, and on the mechanical value of heat. Lond. Edinb. Dublin. Philos. Mag. J. Sci.
**1843**, 23, 263–276. [Google Scholar] - Dyson, F.J. What is heat? Sci. Am.
**1954**, 191, 58–63. [Google Scholar] [CrossRef] - Clausius, R. On a mechanical theorem applicable to heat. Lond. Edinb. Dublin Philos. Mag. J. Sci.
**1870**, 40, 122–127. [Google Scholar] [CrossRef] - Herrmann, F.; Pohlig, M. Which Physical Quantity Deserves the Name “Quantity of Heat”? Entropy
**2021**, 23, 1078. [Google Scholar] [CrossRef] - Clausius, R. Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen Phys.
**1850**, 155, 368–397. [Google Scholar] [CrossRef] - Cropper, W.H. Rudolf Clausius and the road to entropy. Am. J. Phys.
**1986**, 54, 1068–1074. [Google Scholar] [CrossRef] - Lineweaver, C.H. The entropy of the universe and the maximum entropy production principle. In Beyond the Second Law; Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Imre, A.R.; Drozd-Rzoska, A.; Kraska, T.; Martinás, K.; Rebelo, L.P.N.; Rzoska, S.J.; Visak, Z.P.; Yelash, L.V. Phase equilibrium in complex liquids under negative pressure. In Nonlinear Dielectric Phenomena in Complex Liquids; Rzoska, S.J., Zhelezny, V.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 177–189. [Google Scholar]
- Martinás, K.; Imre, A.R. Classical thermodynamics of states with negative absolute temperature or with negative absolute pressure. In Liquid Under Negative Pressure; Imre, A.R., Maris, H.J., Williams, P.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 23–32. [Google Scholar]
- Boltzmann, L. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Studies on the balance of living force between moving material points. Wiener Berichte.
**1968**, 58, 517–560. [Google Scholar] - Smith, R.; Hiroshi, I.; Peters, C. Equations of state and formulations of mixtures. In Supercritical Fluid Science and Technology; Smith, R., Hiroshi, I., Peters, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 4, pp. 333–480. [Google Scholar]
- Antonov, V.A. Dynamics of Star Clusters; Goodman, J., Hut, P., Eds.; Springer: Dordrecht, The Netherlands, 1985; Volume 113, p. 525. [Google Scholar]
- Lynden-Bell, D.; Wood, R.; Royal, A. The Gravo-Thermal Catastrophe in Isothermal Spheres and the Onset of Red-Giant Structure for Stellar Systems. Mon. Not. R. Astron. Soc.
**1968**, 138, 495–525. [Google Scholar] [CrossRef] [Green Version] - Lynden-Bell, D. Negative specific heat in astronomy, physics and chemistry. Phys. A Stat. Mech. Its Appl.
**1999**, 263, 293–304. [Google Scholar] [CrossRef] [Green Version] - Kiessling, M.K.-H. On the equilibrium statistical mechanics of isothermal classical self-gravitating matter. J. Stat. Phys.
**1989**, 55, 203–257. [Google Scholar] [CrossRef] - Roduner, E.; Krüger, T.P. The origin of irreversibility and thermalization in thermodynamic processes. Phys. Rep.
**2021**, 944, 1–43. [Google Scholar] [CrossRef] - Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys.
**1980**, 72, 2384–2393. [Google Scholar] [CrossRef] [Green Version] - Michaelian, K.; Santamaria-Holek, I. Critical analysis of negative heat capacities in nanoclusters. Europhys. Lett.
**2007**, 79, 43001. [Google Scholar] [CrossRef] - Thirring, W.; Narnhofer, H.; Posch, H.A. Negative specific heat, the thermodynamic limit, and ergodicity. Phys. Rev. Lett.
**2003**, 91, 130601. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lynden-Bell, D.; Lynden-Bell, R.M. Negative heat capacities do occur. Comment on “Critical analysis of negative heat capacities in nanoclusters” by Michaelian K. and Santamaría-Holek I. EPL
**2008**, 82, 43001. [Google Scholar] [CrossRef] - Schmidt, M.; Kusche, R.; Hippler, T.; Donges, J.; Kronmüller, W.; von Issendorff, B.; Haberland, H. Negative Heat Capacity for a Cluster of 147 Sodium Atoms. Phys. Rev. Lett.
**2001**, 86, 1191–1194. [Google Scholar] [CrossRef] - Schmidt, M.; Haberland, H. Phase transitions in clusters. Comptes Rendus Phys.
**2002**, 3, 327–340. [Google Scholar] [CrossRef] - Ison, M.; Chernomoretz, A.; Dorso, C. Caloric curves in two- and three-dimensional Lennard–Jones-like systems including long-range forces. Phys. A Stat. Mech. Its Appl.
**2004**, 341, 389–400. [Google Scholar] [CrossRef] [Green Version] - Schmidt, M.; Hippler, T.; Donges, J.; Kronmüller, W.; von Issendorff, B.; Haberland, H.; Labastie, P. Caloric Curve across the Liquid-to-Gas Change for Sodium Clusters. Phys. Rev. Lett.
**2001**, 87, 203402. [Google Scholar] [CrossRef] [Green Version] - Liu, J.-M. Equilibrium Velocity Distribution of Low-Energy Particles in Spherically Symmetric Gravitational Field. Available online: https://arxiv.org/ftp/gr-qc/papers/0405/0405048.pdf (accessed on 12 January 2023).
- Thirring, W.E. Systems with negative specific heat. Eur. Phys. J. A
**1970**, 235, 339–352. [Google Scholar] [CrossRef] [Green Version] - He, P.; Kang, D.-B. Entropy principle and complementary second law of thermodynamics for self-gravitating systems. Mon. Not. R. Astron. Soc.
**2010**, 406, 2678–2688. [Google Scholar] [CrossRef] [Green Version] - Katz, J. Thermodynamics of Self-Gravitating Systems. Found. Phys.
**2003**, 33, 223–269. [Google Scholar] [CrossRef] - Wang, Y.; Kratochvil, J.M.; Linde, A.; Shmakova, M. Current observational constraints on cosmic doomsday. J. Cosmol. Astropart. Phys.
**2004**, 12, 6. [Google Scholar] [CrossRef] - Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys.
**1973**, 31, 161–170. [Google Scholar] [CrossRef] - Castelvecchi, D. Mystery deepens over speed of Universe’s expansion. Nature
**2019**, 458, 458–459. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Schematic view of Lennard–Jones-type intermolecular potential energy $E$ as a function of distance $r$ (

**left**), and compression factor $Z$ for some representative molecules at room temperature (

**right**). The broken line represents the rigid sphere potential for non-interacting ideal gas atoms, corresponding to $Z=1$. Below this line is the effect for the attractive range of the potential, above the line that for repulsion.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Roduner, E.
What Is Heat? Can Heat Capacities Be Negative? *Entropy* **2023**, *25*, 530.
https://doi.org/10.3390/e25030530

**AMA Style**

Roduner E.
What Is Heat? Can Heat Capacities Be Negative? *Entropy*. 2023; 25(3):530.
https://doi.org/10.3390/e25030530

**Chicago/Turabian Style**

Roduner, Emil.
2023. "What Is Heat? Can Heat Capacities Be Negative?" *Entropy* 25, no. 3: 530.
https://doi.org/10.3390/e25030530