Molten Salt Corrosion Behavior of Dual-Phase High Entropy Alloy for Concentrating Solar Power Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural Characterization
3.2. Electrochemical and Corrosion Behavior
4. Discussions
4.1. Effect of Alloy Composition on Molten Salt Corrosion Behavior
4.2. Effect of Alloy Microstructure on Molten Salt Corrosion Behavior
5. Conclusions
- (i)
- Higher Ni content in EHEA and sacrificial role of Al in reducing outward diffusion of Cr, Fe, and Ni in AlCoCrFeNi2.1 and the different reactivity of formation of chlorides, as well as enrichment of Co and Ni in the corrosion layer.
- (ii)
- Thermodynamically driven corrosion between alloying elements and molten salt constituents or impurities present within the melt. Metallic impurities such as Ni2+, Fe2+, and Co2+ enhance the corrosion resistance of AlCoCrFeNi2.1 via enrichment of impurity ions such as Ni, Co, and Fe (to lesser extent) in the corrosion layer as temperature increases.
- (iii)
- A lower volume fraction of the BCC phase, which makes it less prone to galvanic corrosion. The phase-specific work function for the as-cast AlCoCrFeNi2.1 and DS2205 suggested micro-galvanic corrosion, with nobler L12 and FCC phase in EHEA and DS 2205, respectively, compared to the B2 and BCC phases.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yurtkuran, S. The Effect of Agriculture, Renewable Energy Production, and Globalization on CO2 Emissions in Turkey: A Bootstrap ARDL Approach. Renew Energy 2021, 171, 1236–1245. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N. A Machine Learning Approach on the Relationship among Solar and Wind Energy Production, Coal Consumption, GDP, and CO2 Emissions. Renew Energy 2021, 167, 99–115. [Google Scholar] [CrossRef]
- Murdock, H.E.; Gibb, D.; Andre, T.; Sawin, J.L.; Brown, A.; Ranalder, L.; Andre, T.; Brown, A.; Collier, U.; Dent, C.; et al. Renewables 2021-Global Status Report. 2021, p. 371. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf (accessed on 28 December 2022).
- Ding, W.; Shi, H.; Xiu, Y.; Bonk, A.; Weisenburger, A.; Jianu, A.; Bauer, T. Hot Corrosion Behavior of Commercial Alloys in Thermal Energy Storage Material of Molten MgCl2/KCl/NaCl under Inert Atmosphere. Sol. Energy Mater. Sol. Cells 2018, 184, 22–30. [Google Scholar] [CrossRef]
- Bauer, T.; Pfleger, N.; Laing, D.; Steinmann, W.D.; Eck, M.; Kaesche, S. High-Temperature Molten Salts for Solar Power Application. Molten Salts Chem. 2013, 415–438. [Google Scholar] [CrossRef]
- Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A.M. Heat Transfer Fluids for Concentrating Solar Power Systems—A Review. Appl Energy 2015, 146, 383–396. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wang, X.; Li, P.; Hao, Q.; Xiao, B. Survey and Evaluation of Equations for Thermophysical Properties of Binary/Ternary Eutectic Salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for Heat Transfer and Thermal Storage Fluids in CSP. Sol. Energy 2017, 152, 57–79. [Google Scholar] [CrossRef]
- Ding, W.; Shi, Y.; Kessel, F.; Koch, D.; Bauer, T. Characterization of Corrosion Resistance of C/C–SiC Composite in Molten Chloride Mixture MgCl2/NaCl/KCl at 700 °C. Npj Mater. Degrad. 2019, 3, 42. [Google Scholar] [CrossRef]
- Kruizenga, A. Corrosion Mechanisms in Chloride and Carbonate Salts; SANDIA Report; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2012. [CrossRef]
- Mehos, M.; Turchi, C.; Vidal, J.; Wagner, M.; Ma, Z.; Ho, C.; Kolb, W.; Andraka, C.; Kruizenga, A. Concentrating Solar Power Gen3 Demonstration Roadmap; Technical Report; National Renewable Energy Lab (NREL): Golden, CO, USA, 2017.
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Pole, M.; Sadeghilaridjani, M.; Shittu, J.; Ayyagari, A.; Mukherjee, S. High Temperature Wear Behavior of Refractory High Entropy Alloys Based on 4-5-6 Elemental Palette. J. Alloys Compd. 2020, 843, 156004. [Google Scholar] [CrossRef]
- Patel, K.; Sadeghilaridjani, M.; Pole, M.; Mukherjee, S. Hot Corrosion Behavior of Refractory High Entropy Alloys in Molten Chloride Salt for Concentrating Solar Power Systems. Sol. Energy Mater. Sol. Cells 2021, 230, 111222. [Google Scholar] [CrossRef]
- Ren, J.; Mahajan, C.; Liu, L.; Follette, D.; Chen, W.; Mukherjee, S. Corrosion Behavior of Selectively Laser Melted CoCrFeMnNi High Entropy Alloy. Metals 2019, 9, 1029. [Google Scholar] [CrossRef]
- Sadeghilaridjani, M.; Muskeri, S.; Pole, M.; Mukherjee, S. High-Temperature Nano-Indentation Creep of Reduced Activity High Entropy Alloys Based on 4-5-6 Elemental Palette. Entropy 2020, 22, 230. [Google Scholar] [CrossRef]
- Sadeghilaridjani, M.; Ayyagari, A.; Muskeri, S.; Hasannaeimi, V.; Salloom, R.; Chen, W.Y.; Mukherjee, S. Ion Irradiation Response and Mechanical Behavior of Reduced Activity High Entropy Alloy. J. Nucl. Mater. 2020, 529, 151955. [Google Scholar] [CrossRef]
- Sadeghilaridjani, M.; Mukherjee, S. High-Temperature Nano-Indentation Creep Behavior of Multi-Principal Element Alloys under Static and Dynamic Loads. Metals 2020, 10, 250. [Google Scholar] [CrossRef]
- Sadeghilaridjani, M.; Muskeri, S.; Hassannaeimi, V.; Pole, M.; Mukherjee, S. Strain Rate Sensitivity of a Novel Refractory High Entropy Alloy: Intrinsic versus Extrinsic Effects. Mater. Sci. Eng. A 2019, 766, 138326. [Google Scholar] [CrossRef]
- Elbakhshwan, M.; Doniger, W.; Falconer, C.; Moorehead, M.; Parkin, C.; Zhang, C.; Sridharan, K.; Couet, A. Corrosion and Thermal Stability of CrMnFeNi High Entropy Alloy in Molten FLiBe Salt. Sci. Rep. 2019, 9, 18993. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Muskeri, S.; Hasannaeimi, V.; Salloom, R.; Sadeghilaridjani, M.; Mukherjee, S. Small-Scale Mechanical Behavior of a Eutectic High Entropy Alloy. Sci. Rep. 2020, 10, 2669. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.; Wang, T.; Wen, B.; Wang, Z.; Jie, J.; Cao, Z.; et al. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, Y.; Jiang, H.; Wang, Z.; Cao, Z.; Guo, S.; Wang, T.; Li, T.; Liaw, P.K. Promising Properties and Future Trend of Eutectic High Entropy Alloys. Scr. Mater. 2020, 187, 202–209. [Google Scholar] [CrossRef]
- Wani, I.S.; Bhattacharjee, T.; Sheikh, S.; Bhattacharjee, P.P.; Guo, S.; Tsuji, N. Tailoring Nanostructures and Mechanical Properties of AlCoCrFeNi 2.1 Eutectic High Entropy Alloy Using Thermo-Mechanical Processing. Mater. Sci. Eng. A 2016, 675, 99–109. [Google Scholar] [CrossRef]
- Wani, I.S.; Bhattacharjee, T.; Sheikh, S.; Lud, Y.P.; Chatterjee, S.; Bhattacharjeea, P.P.; Guo, S.; Tsujib, N. Ultrafine-Grained AlCoCrFeNi2.1 Eutectic High-Entropy Alloy. Mater. Res. Lett. 2016, 4, 174–179. [Google Scholar] [CrossRef]
- Hasannaeimi, V.; Ayyagari, A.; Muskeri, S.; Salloom, R.; Mukherjee, S. Surface Degradation Mechanisms in a Eutectic High Entropy Alloy at Microstructural Length-Scales and Correlation with Phase-Specific Work Function. Npj Mater. Degrad. 2019, 3, 16. [Google Scholar] [CrossRef]
- Choudhuri, D.; Jannotti, P.A.; Muskeri, S.; Shukla, S.; Gangireddy, S.; Mukherjee, S.; Schuster, B.E.; Lloyd, J.T.; Mishra, R.S. Ballistic Response of a FCC-B2 Eutectic AlCoCrFeNi2.1 High Entropy Alloy. J. Dyn. Behav. Mater. 2019, 5, 495–503. [Google Scholar] [CrossRef]
- Selvam, K.; Saini, J.; Perumal, G.; Ayyagari, A.; Salloom, R.; Mondal, R.; Mukherjee, S.; Grewal, H.S.; Arora, H.S. Exceptional Cavitation Erosion-Corrosion Behavior of Dual-Phase Bimodal Structure in Austenitic Stainless Steel. Tribol. Int. 2019, 134, 77–86. [Google Scholar] [CrossRef]
- Arora, H.S.; Ayyagari, A.; Saini, J.; Selvam, K.; Riyadh, S.; Pole, M.; Grewal, H.S.; Mukherjee, S. High Tensile Ductility and Strength in Dual-Phase Bimodal Steel through Stationary Friction Stir Processing. Sci. Rep. 2019, 9, 1972. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, K.; Hughes, R.; Luo, J.L. Corrosion Mechanisms and Materials Selection for the Construction of Flue Gas Component in Advanced Heat and Power Systems. Ind. Eng. Chem. Res. 2017, 56, 14141–14154. [Google Scholar] [CrossRef]
- Iacoviello, F.; Casari, F.; Gialanella, S. Effect of “475 °C Embrittlement” on Duplex Stainless Steels Localized Corrosion Resistance. Corros. Sci. 2005, 47, 909–922. [Google Scholar] [CrossRef]
- Schulz, Z.; Whitcraft, P.; Wachowiak, D. NACE-2014-4345. Availability and Economics of Using Duplex Stainless Steels. 2014. Available online: https://www.rolledalloys.com/wp-content/uploads/Availability-and-Economics-of-Using-Duplex-Stainless-Steels-rolled-alloys.pdf (accessed on 28 December 2022).
- Donik, Č.; Kocijan, A.; Grant, J.T.; Jenko, M.; Drenik, A.; Pihlar, B. XPS Study of Duplex Stainless Steel Oxidized by Oxygen Atoms. Corros. Sci. 2009, 51, 827–832. [Google Scholar] [CrossRef]
- Ho, M.Y.; Geddes, J.; Barmatov, E.; Crawford, L.; Hughes, T. Effect of Composition and Microstructure of Duplex Stainless Steel on Adsorption Behaviour and Efficiency of Corrosion Inhibitors in 4 Molar Hydrochloric Acid. Part I: Standard DSS 2205. Corros. Sci. 2018, 137, 43–52. [Google Scholar] [CrossRef]
- Mahajan, C.; Hasannaeimi, V.; Pole, M.; Kautz, E.; Gwalani, B.; Mukherjee, S. Corrosion Mechanisms in Model Binary Metallic Glass Coatings on Mild Steel and Correlation with Electron Work Function. Corros. Sci. 2022, 207, 110578. [Google Scholar] [CrossRef]
- Leblanc, P.; Frankel, G.S. A Study of Corrosion and Pitting Initiation of AA2024-T3 Using Atomic Force Microscopy. J. Electrochem. Soc. 2002, 149, B239. [Google Scholar] [CrossRef]
- Vignarooban, K.; Pugazhendhi, P.; Tucker, C.; Gervasio, D.; Kannan, A.M. Corrosion Resistance of Hastelloys in Molten Metal-Chloride Heat-Transfer Fluids for Concentrating Solar Power Applications. Sol. Energy 2014, 103, 62–69. [Google Scholar] [CrossRef]
- Ding, W.; Bonk, A.; Bauer, T. Corrosion Behavior of Metallic Alloys in Molten Chloride Salts for Thermal Energy Storage in Concentrated Solar Power Plants: A Review. Front. Chem. Sci. Eng. 2018, 12, 564–576. [Google Scholar] [CrossRef]
- ASTM G31-21 Standard Guide for Laboratory Immersion Corrosion Testing of Metals. Available online: https://www.astm.org/g0031-21.html (accessed on 23 January 2023).
- Gomez-Vidal, J.C.; Tirawat, R. Corrosion of Alloys in a Chloride Molten Salt (NaCl-LiCl) for Solar Thermal Technologies. Sol. Energy Mater. Sol. Cells 2016, 157, 234–244. [Google Scholar] [CrossRef]
- Örnek, C.; Engelberg, D.L. SKPFM Measured Volta Potential Correlated with Strain Localisation in Microstructure to Understand Corrosion Susceptibility of Cold-Rolled Grade 2205 Duplex Stainless Steel. Corros. Sci. 2015, 99, 164–171. [Google Scholar] [CrossRef]
- Örnek, C.; Ahmed, A.H.; Engelberg, D.L. Effect of Microstructure on Atmospheric-Induced Corrosion of Heat-Treated Grade 2205 and 2507 Duplex Stainless Steels. In Proceedings of the EuroCorr 2012, Istanbul, Turkey, 9–20 September 2012; pp. 1–10. [Google Scholar]
- Reccagni, P.; Guilherme, L.H.; Lu, Q.; Gittos, M.F.; Engelberg, D.L. Reduction of Austenite-Ferrite Galvanic Activity in the Heat-Affected Zone of a Gleeble-Simulated Grade 2205 Duplex Stainless Steel Weld. Corros. Sci. 2019, 161, 108198. [Google Scholar] [CrossRef]
- Engelberg, D.L.; Örnek, C. Probing Propensity of Grade 2205 Duplex Stainless Steel towards Atmospheric Chloride-Induced Stress Corrosion Cracking. Corros. Eng. Sci. Technol. 2014, 49, 535–539. [Google Scholar] [CrossRef]
- Schmid, A.; Mori, G.; Hönig, S.; Weil, M.; Strobl, S.; Haubner, R. Comparison of the High-Temperature Chloride-Induced Corrosion between Duplex Steel and Ni Based Alloy in Presence of H2S. Corros. Sci. 2018, 139, 76–82. [Google Scholar] [CrossRef]
- Vignarooban, K.; Xu, X.; Wang, K.; Molina, E.E.; Li, P.; Gervasio, D.; Kannan, A.M. Vapor Pressure and Corrosivity of Ternary Metal-Chloride Molten-Salt Based Heat Transfer Fluids for Use in Concentrating Solar Power Systems. Appl. Energy 2015, 159, 206–213. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, J.; Wu, W.; Zhou, W. Corrosion in the Molten Fluoride and Chloride Salts and c Applications. Prog. Mater. Sci. 2018, 97, 448–487. [Google Scholar] [CrossRef]
- Sridharan, K.; Allen, T.R. Corrosion in Molten Salts. Molten Salts Chem. 2013, 241–267. [Google Scholar] [CrossRef]
- Ding, W.; Bonk, A.; Gussone, J.; Bauer, T. Cyclic Voltammetry for Monitoring Corrosive Impurities in Molten Chlorides for Thermal Energy Storage. Energy Procedia 2017, 135, 82–91. [Google Scholar] [CrossRef]
- Pint, B.A.; McMurray, J.W.; Willoughby, A.W.; Kurley, J.M.; Pearson, S.R.; Lance, M.J.; Leonard, D.N.; Meyer, H.M.; Jun, J.; Raiman, S.S.; et al. Re-Establishing the Paradigm for Evaluating Halide Salt Compatibility to Study Commercial Chloride Salts at 600 °C–800 °C. Mater. Corros. 2019, 70, 1439–1449. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; et al. FactSage Thermochemical Software and Databases, 2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Danon, A.E.; Muránsky, O.; Karatchevtseva, I.; Zhang, Z.; Li, Z.J.; Scales, N.; Kruzic, J.J.; Edwards, L. Molten Salt Corrosion (FLiNaK) of a Ni–Mo–Cr Alloy and Its Welds for Application in Energy-Generation and Energy-Storage Systems. Corros. Sci. 2020, 164, 108306. [Google Scholar] [CrossRef]
- Ayyagari, A.; Hasannaeimi, V.; Arora, H.; Mukherjee, S. Electrochemical and Friction Characteristics of Metallic Glass Composites at the Microstructural Length-Scales. Sci. Rep. 2018, 8, 906. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, P.; Frankel, G.S. Characterization of AA2024-T3 by Scanning Kelvin Probe Force Microscopy. J. Electrochem. Soc. 2019, 145, 2285–2295. [Google Scholar] [CrossRef] [Green Version]
Cr [ppm] | Fe [ppm] | Ni [ppm] | Co [ppm] | Si [ppm] | Al [ppm] | |
---|---|---|---|---|---|---|
NaCl-KCl-MgCl2 | ≤15 | ≤50 | ≤10 | ≤10 | ≤125 | ≤65 |
AlCoCrFeNi2.1 (at. %) | DS2205 (at. %) | ||||||
---|---|---|---|---|---|---|---|
Element | FCC L12 | BCC B2 | Nominal Comp. | Element | FCC γ—Austenite | BCC α—Ferrite | Nominal Comp. |
Al | 6.4 ± 0.3 | 15.7 ± 0.7 | 16.4 | Cr | 21.6 ± 0.7 | 24.8 ± 0.3 | 22.24 |
Co | 18.4 ± 0.3 | 15.1 ± 0.2 | 16.4 | Mo | 2.1 ± 0.1 | 4.1 ± 0.2 | 3.18 |
Cr | 23.1 ± 0.4 | 14.3 ± 0.3 | 16.4 | Ni | 6.9 ± 0.5 | 4.2 ± 0.3 | 5.75 |
Fe | 20.5 ± 0.4 | 14.9 ± 0.2 | 16.4 | Mn | 1.9 ± 0.2 | 1.6 ± 0.4 | 1.86 |
Ni | 31.6 ± 0.5 | 40.3 ± 0.7 | 34.4 | Si | 0.7 ± 0.2 | 0.5 ± 0.1 | 0.77 |
Fe | 64.3 ± 0.7 | 66.5 ± 0.6 | Balance |
450 °C | 650 °C | |||||||
---|---|---|---|---|---|---|---|---|
Ecorr (V) | Icorr (A.cm−2) | CR (Equation (1)) (mm/year) | CR (Equation (2)) (mm/year) | Ecorr (V) | Icorr (A.cm−2) | CR (Equation (1)) (mm/year) | CR (Equation (2)) (mm/year) | |
AlCoCrFeNi2.1 | −0.26 | 0.17 × 10−3 | 1.18 ± 1 | 3.58 | −0.13 | 1.4 × 10−3 | 9.2 ± 1 | 15.67 |
DS2205 | −0.59 | 0.46 × 10−3 | 4.78 ± 1 | 9.5 | −0.18 | 1.9 × 10−3 | 19.86 ± 1 | 32.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, K.; Hasannaeimi, V.; Sadeghilaridjani, M.; Muskeri, S.; Mahajan, C.; Mukherjee, S. Molten Salt Corrosion Behavior of Dual-Phase High Entropy Alloy for Concentrating Solar Power Systems. Entropy 2023, 25, 296. https://doi.org/10.3390/e25020296
Patel K, Hasannaeimi V, Sadeghilaridjani M, Muskeri S, Mahajan C, Mukherjee S. Molten Salt Corrosion Behavior of Dual-Phase High Entropy Alloy for Concentrating Solar Power Systems. Entropy. 2023; 25(2):296. https://doi.org/10.3390/e25020296
Chicago/Turabian StylePatel, Kunjal, Vahid Hasannaeimi, Maryam Sadeghilaridjani, Saideep Muskeri, Chaitanya Mahajan, and Sundeep Mukherjee. 2023. "Molten Salt Corrosion Behavior of Dual-Phase High Entropy Alloy for Concentrating Solar Power Systems" Entropy 25, no. 2: 296. https://doi.org/10.3390/e25020296
APA StylePatel, K., Hasannaeimi, V., Sadeghilaridjani, M., Muskeri, S., Mahajan, C., & Mukherjee, S. (2023). Molten Salt Corrosion Behavior of Dual-Phase High Entropy Alloy for Concentrating Solar Power Systems. Entropy, 25(2), 296. https://doi.org/10.3390/e25020296