Microstructure, Phase Evolution, and Chemical Behavior of CrCuFeNiTiAlx High Entropy Alloys Processed by Mechanical Alloying
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phase Analysis
3.2. Lattice Constant
3.3. Structural Transformation from FCC to FCC + BCC and BCC
3.4. Microstructure and Chemical Analysis
3.5. EDS Mappings
3.6. Mechanical Properties
3.7. Chemical Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Manzonia, A.M.; Glatzelb, U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 2019, 147, 512–532. [Google Scholar] [CrossRef]
- MacDonald, B.E.; Fu, Z.; Zheng, B.; Fu, Z.; Zheng, B.; Chen, W.; Lin, Y.; Chen, F.; Zhang, L.; Ivanisenko, J.; et al. Recent progress in high entropy alloy research. JOM 2017, 69, 2024–2031. [Google Scholar] [CrossRef]
- Mao, H.H.; Chen, H.L.; Chen, Q. TCHEA1: A thermodynamic database not limited for “high entropy” alloys. J. Phase Equilibria Diffus. 2017, 38, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638. [Google Scholar] [CrossRef] [Green Version]
- Poletti, M.G.; Battezzati, L. Electronic and thermodynamic criteria for the occurrence of high-entropy alloys in metallics systems. Acta Mater. 2014, 75, 297–306. [Google Scholar] [CrossRef]
- Chen, Y.L.; Hu, Y.H.; Hsieh, C.A. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 2009, 481, 768–775. [Google Scholar] [CrossRef]
- Sriharitha, R.; Murty, B.S.; Kottada, R.S. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x=0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics 2013, 32, 119–126. [Google Scholar] [CrossRef]
- Joseph, J.; Haghdadi, N.; Annasamy, M.; Kada, S.; Hodgson, P.; Barnett, M.; Fabijanic, D. On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scr. Mater. 2020, 186, 230–235. [Google Scholar] [CrossRef]
- Li, Y.; Liao, W.-B.; Chen, H.; Brechtl, J.; Song, W.; Yin, W.; He, Z.; Liaw, P.; Zhang, Y. A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength. Sci. China Mater. 2022, 66, 780–792. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Fan, Y.; Zhang, W.; Wei, R.; Wang, T.; Zhang, T.; Li, F. A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties. J. Magn. Magn. Mater. 2020, 502, 5. [Google Scholar] [CrossRef]
- Li, Z.; Raabe, D. Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 2017, 69, 2099–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuh, B.; Mendez-Martin, F.; Völker, B. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015, 96, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.H.; Zhang, Y.P.; Guan, H.G.; Suo, H.M.; He, L. AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Met. Mater. Eng. 2013, 42, 1127–1129. [Google Scholar] [CrossRef]
- Marych, M.V.; Bagliuk, G.A.; Mamonova, A.A.; Gripachevskii, A.N. The influence of production conditions on the structure, phase composition, and properties of the high-entropy Ti-Cr-Fe-Ni-Cu alloy. Powder Metall. Met. Ceram. 2019, 57, 533–541. [Google Scholar] [CrossRef]
- Ruiz-Jasso, G.E.; la Torre, S.D.-d.; Escalona-González, R.; Méndez-García, J.C.; Robles, J.A.C.; Refugio-García, E.; Rangel, E.R. Synthesis of CuCrFeNiTiAlx High Entropy Alloys by Means of Mechanical Alloying and Spark Plasma Sintering. Can. Metall. Q. 2021, 60, 66–74. [Google Scholar] [CrossRef]
- Manzoni, A.M.; Singh, S.; Daoud, H.M.; Popp, R.; Völkl, R.; Glatzel, U.; Wanderka, N. On the path to optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti high entropy alloy family for high temperature applications. Entropy 2016, 18, 104–109. [Google Scholar] [CrossRef]
- Manzoni, A.; Singh, S.; Daoud, H.; Popp, R.; Völkl, R.; Glatzel, U.; Wanderka, N. On the Optimization of the Microstructure and Mechanical Properties of Al-Co-Cr-Cu-Fe-Ni-Ti -Based High Entropy Alloys. Jordan J. Phys. 2015, 8, 177. [Google Scholar]
- Xiao, D.; Zhou, P.; Wu, W.; Diao, H.; Gao, M.; Song, M.; Liaw, P. Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys. Mater. Des. 2017, 116, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.icdd.com/pdf-2/ (accessed on 10 January 2023).
- Wolfenden, A.; Harmouche, M.R.; Blessing, G.V.; Chen, Y.T.; Dayal, P.T.V.; Kinra, V.K.; Lemmens, J.W.; Phillips, R.R.; Smith, J.S.; Mahrnoodi, P.; et al. Dynamic Young’s Modulus Measurements in Metallic Materials: Results of an Interlaboratory Testing Program. J. Test. Eval. 1989, 17, 2–13. [Google Scholar] [CrossRef]
- ASTM E384–16; Standard Test Method for Microindentation Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM G59-97; Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International: West Conshohocken, PA, USA, 2014.
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904. [Google Scholar] [CrossRef]
- Shackelford, J.F.; Han, Y.-H.; Kim, S.; Kwon, S.-H. CRC Materials Science and Engineering Handbook, 4th ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Lei, Z.; Liu, X.; Wu, Y.; Wang, H.; Jiang, S.; Wang, S.; Hui, X.; Wu, Y.; Gault, B.; Kontis, P.; et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550. [Google Scholar] [CrossRef]
- Rost, C.M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.C.; Hou, D.; Jones, J.L.; Curtarolo, S.; Maria, J.P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485–8490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracq, G.; Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Joubert, J.M.; Guillot, I. The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 2017, 128, 327–336. [Google Scholar] [CrossRef]
- Baglyuk, G.A.; Marich, M.V.; Mamonova, A.A.; Gripachevskii, A.N. Features of structurization during sintering of compacts from a multicomponent Ti-Cr-Fe-Ni-Cu Charge. Powder Metall. Met. Ceram. 2016, 54, 543–547. [Google Scholar] [CrossRef]
- Abu-Odeh, A.; Galvan, E.; Kirk, T.; Mao, H.; Chen, Q.; Mason, P.; Malak, R.; Arróyave, R. Efficient exploration of the high entropy alloy composition-phase space. Acta Mater. 2018, 152, 41–57. [Google Scholar] [CrossRef]
- Dieter, G.E.; Bacon, D.J. Mechanical Metallurgy; McGraw-Hill: New York, NY, USA, 1986; Volume 3. [Google Scholar]
- Askeland, D.R.; Fulay, P.P.; Wright, W.J. The Science and Engineering of Materials, 7th ed.; Cengage Learning: Stamford, CT, USA, 2017. [Google Scholar]
- ASTM C876-15; Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International: West Conshohocken, PA, USA, 2008.
Phase | Chemical Formula | Sample | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Iron Nickel | Fe0.64Ni0.36 | x | x | x | x | |
Iron Nickel | FeNi | x | x | x | x | |
Awaruite | FeNi | x | ||||
Chromium Iron Nickel | CrNiFe | x | x | x | x | |
Aluminum Nickel | AlNi3 | x | ||||
Copper Nickel | Cu3.8Ni | x | x | |||
Udimet 500 | Ni3AlTi | x | x | x | x | x |
Copper Oxide | Cu2O | x | x | x | x | x |
Hematite, syn | Fe2O3 | x | x | x | ||
Chromium oxide | Cr2O3 | x | ||||
Copper Iron Titanium Oxide | Cu1.2Ti0.2Fe1.6O4 | x | ||||
Copper Iron Titanium | Cu1.2Ti0.2Fe1.6 | x |
Sample | Hardness (HV) | Elastic Modulus (GPa) | Compressive Strength (KN/mm2) |
---|---|---|---|
1 | 427 | 167 +/− 10 | 2211 |
2 | 467 | 161 +/− 9 | 1777 |
3 | 480 | 153 +/− 9 | 2393 |
4 | 540 | 142 +/− 10 | 1973 |
5 | 555 | 137 +/− 9 | 1043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Ángel-González, A.; Tapía-Higuera, G.D.; Rivera-Ortiz, I.; Castillo-Robles, J.A.; Rodríguez-García, J.A.; Calles-Arriaga, C.A.; Miranda-Hernández, J.G.; Rocha-Rangel, E. Microstructure, Phase Evolution, and Chemical Behavior of CrCuFeNiTiAlx High Entropy Alloys Processed by Mechanical Alloying. Entropy 2023, 25, 256. https://doi.org/10.3390/e25020256
del Ángel-González A, Tapía-Higuera GD, Rivera-Ortiz I, Castillo-Robles JA, Rodríguez-García JA, Calles-Arriaga CA, Miranda-Hernández JG, Rocha-Rangel E. Microstructure, Phase Evolution, and Chemical Behavior of CrCuFeNiTiAlx High Entropy Alloys Processed by Mechanical Alloying. Entropy. 2023; 25(2):256. https://doi.org/10.3390/e25020256
Chicago/Turabian Styledel Ángel-González, Anay, Greysi D. Tapía-Higuera, Ibeth Rivera-Ortiz, José A. Castillo-Robles, José A. Rodríguez-García, Carlos A. Calles-Arriaga, José G. Miranda-Hernández, and Enrique Rocha-Rangel. 2023. "Microstructure, Phase Evolution, and Chemical Behavior of CrCuFeNiTiAlx High Entropy Alloys Processed by Mechanical Alloying" Entropy 25, no. 2: 256. https://doi.org/10.3390/e25020256
APA Styledel Ángel-González, A., Tapía-Higuera, G. D., Rivera-Ortiz, I., Castillo-Robles, J. A., Rodríguez-García, J. A., Calles-Arriaga, C. A., Miranda-Hernández, J. G., & Rocha-Rangel, E. (2023). Microstructure, Phase Evolution, and Chemical Behavior of CrCuFeNiTiAlx High Entropy Alloys Processed by Mechanical Alloying. Entropy, 25(2), 256. https://doi.org/10.3390/e25020256