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Abstract: Dual-phase high entropy alloys have recently attracted widespread attention as advanced
structural materials due to their unique microstructure, excellent mechanical properties, and corrosion
resistance. However, their molten salt corrosion behavior has not been reported, which is critical
in evaluating their application merit in the areas of concentrating solar power and nuclear energy.
Here, the molten salt corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) was
evaluated in molten NaCl-KCl-MgCl2 salt at 450 ◦C and 650 ◦C in comparison to conventional duplex
stainless steel 2205 (DS2205). The EHEA showed a significantly lower corrosion rate of ~1 mm/year
at 450 ◦C compared to ~8 mm/year for DS2205. Similarly, EHEA showed a lower corrosion rate of
~9 mm/year at 650 ◦C compared to ~20 mm/year for DS2205. There was selective dissolution of the
body-centered cubic phase in both the alloys, B2 in AlCoCrFeNi2.1 and α-Ferrite in DS2205. This was
attributed to micro-galvanic coupling between the two phases in each alloy that was measured in
terms of Volta potential difference using a scanning kelvin probe. Additionally, the work function
increased with increasing temperature for AlCoCrFeNi2.1, indicating that the FCC-L12 phase acted as
a barrier against further oxidation and protected the underlying BCC-B2 phase with enrichment of
noble elements in the protective surface layer.

Keywords: molten salt corrosion; scanning kelvin probe (SKP); work function; galvanic corrosion;
high entropy alloy; dual-phase alloy

1. Introduction

The world economy is highly dependent on fossil fuels to meet persistent energy
demands, which results in carbon emissions and negative environmental impacts. This is
driving the global search for sustainable and alternative energy sources [1], solar energy
being one of the most viable and clean options [2]. The global capacity for concentrating
solar power (CSP) systems has increased fifteen-fold over the last two decades [3]. The solar
power conversion systems in CSP operate with advanced fluids above 400 ◦C [4], using
molten salts such as solar salt [5], Hitec salt [6], and MgNaK chlorides [7]. In particular, the
ternary MgNaK chloride (MgCl2-NaCl-KCl) eutectic salt mixture has high thermal stability
and is more cost effective compared to other molten salts [8,9]. This allows CSP to operate
at higher temperatures for higher efficiency of thermal-to-electrical energy conversion and
reduces the cost of electricity. However, degradation of structural materials in a molten
salt environment remains a critical concern in CSP systems [9,10]. The high operating
temperature and reactive nature of the salt significantly increase the corrosion susceptibility
of the materials and reduce component lifetimes [4]. This necessitates the development of
new alloys with high-temperature strength and corrosion resistance to withstand the harsh
molten salt environment of CSP systems.

High-entropy alloys (HEAs) with multiple principal elements in (nearly) equimolar
proportions [11,12] have attracted much attention recently because the unconventional
alloying approach results in excellent mechanical properties and surface degradation
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resistance [13–18]. Most of the reported HEA systems have a single-phase body-centered
cubic (BCC) or face-centered cubic (FCC) structure [19–21]. To achieve a good balance of
high strength of BCC HEAs along with good ductility of FCC HEAs, eutectic high-entropy
alloys (EHEAs) consisting of the dual phases in lamellar microstructure have been recently
developed [22,23]. Some examples of EHEAs with excellent combination of strength and
ductility include CoCrFeNiZr0.5, CoCrFeNiMnPd1.4, CoCrFeNiMnPd0.6, Nb25Sc25Ti25Zr25,
AlCrFeNiMo0.2, Al1.2CrCuFeNi2 and AlCoCrFeNix [24]. In particular, the AlCoCrFeNi2.1
EHEA with lamellar arrangement of BCC (B2) and FCC (L12) solid-solution phases has
shown the most promising mechanical properties [22,25–27]. AlCoCrFeNi2.1 EHEA showed
superior pitting corrosion resistance compared to 304 stainless steel in chloride solution
at room temperature [27]. This EHEA exhibited an excellent combination of high yield
strength (~750 MPa) and ductility (elongation ~18%) at room temperature [22,28]. However,
the molten salt corrosion behavior of dual phase HEAs for potential use in CSP systems
has not been reported so far, and fundamental understanding of the underlying high-
temperature corrosion mechanisms is lacking.

Here, the corrosion behavior of AlCoCrFeNI2.1 EHEA in molten NaCl-KCl-MgCl2 salt
was investigated at 450 ◦C and 650 ◦C. The performance of EHEA was compared with one of
the benchmark dual-phase structural alloys, namely duplex steel 2205 (DS2205). Dual-phase
steels have been reported to have excellent corrosion resistance and a good combination of
strength and ductility [29–35]. To explain the effect of eutectic microstructure on the local
electrochemical activity, Scanning Kelvin Probe (SKP) analysis was utilized to measure the
relative electron work function [27,36,37]. Our findings pave the way for further research
on molten salt corrosion behavior of dual-phase alloys over a wide range of temperature
for potential use in concentrating solar power systems.

2. Materials and Methods

The AlCoCrFeNi2.1 eutectic high-entropy alloy ingot was prepared by vacuum-arc-
melting high purity constituent elements (with 99.95 wt.% elemental purity). The ingots were
re-melted multiple times for homogeneity. Samples with dimensions 20 mm × 5 mm × 2 mm
were cut from the alloy for counter and working electrodes. The samples were polished
to 1200-grit silicon carbide paper, rinsed with distilled water, ultrasonically degreased
with acetone, and dried. A schematic and experimental setup of the furnace using three
electrodes for the electrochemical studies are shown in Figure 1a,b. The custom-built tube
furnace consisted of three electrodes submerged up to 5 mm in the eutectic salt mixture in
open air at the two temperatures of 450 ◦C and 650 ◦C. The electrochemical measurements
were performed using a potentiostat (Reference 3000, Gamry, Warminster, PA, USA). A
Pt sheet (15 mm × 5 mm × 0.5 mm) in a quartz tube was used as the reference electrode
(RE). A porous membrane made of alumina was used at the bottom of the quartz tube
to provide ionic conductivity in the molten salt. The porous membrane minimizes salt
migration and provides good electrical continuity. To eliminate any mixed potentials in the
three-electrode system, the counter electrode was the same alloy as the working electrode
in all experiments. The surface area ratio of the counter electrode (CE) to the working
electrode (WE) was kept fixed at 1 (CE:WE = 1:1) [38]. The working and counter electrodes
were placed in open-ended quartz tubes to electrically isolate them during experiments.

Analytical grade MgCl2, NaCl, and KCl (Sigma Aldrich, St. Louis, MO, USA) were
used to prepare the eutectic salt mixture in the proportion of 45.4 wt.%, 33 wt.%, and
21.6 wt.% respectively. Melting point of the salt mixture was determined experimentally
to be ~380 ◦C, which is consistent with the value reported in the literature [39]. One
application is in indirect storage system with molten salt as storage medium, often used
in a parabolic trough CSP plant with maximum temperatures in the range of around
400–450 ◦C. Another configuration is direct storage system, often used in a tower CSP plant
with molten salt heat transfer fluid (HTF), as well as TES with maximum temperatures in
the range of around 600–650 ◦C [4–7]. The eutectic salt mixture was added in an alumina
crucible to obtain a salt melt depth of ~20 mm. The NaCl-KCl-MgCl2 salt was purified
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by annealing at 300 ◦C for 24 h in high purity Ar atmosphere to remove moisture and
other impurities [39]. Inductively coupled plasma-optical emission spectroscopy (ICP-
OES) was used to determine impurity concentration in the eutectic salt mixture before
the corrosion test as summarized in Table 1. After purification, the residual moisture in
the salt is expected to be low. However, a detailed evaluation of the effect of moisture
content on corrosion behavior has not been performed in the current study, but is part of a
future study.

Entropy 2023, 25, x FOR PEER REVIEW 3 of 16 
 

 

Another configuration is direct storage system, often used in a tower CSP plant with mol-
ten salt heat transfer fluid (HTF), as well as TES with maximum temperatures in the range 
of around 600–650 °C [4–7]. The eutectic salt mixture was added in an alumina crucible to 
obtain a salt melt depth of ~20 mm. The NaCl-KCl-MgCl2 salt was purified by annealing 
at 300 °C for 24 h in high purity Ar atmosphere to remove moisture and other impurities 
[39]. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to 
determine impurity concentration in the eutectic salt mixture before the corrosion test as 
summarized in Error! Reference source not found.. After purification, the residual mois-
ture in the salt is expected to be low. However, a detailed evaluation of the effect of mois-
ture content on corrosion behavior has not been performed in the current study, but is 
part of a future study. 

Open circuit potential (OCP) and potentiodynamic polarization tests were conducted 
for each alloy. The OCP was recorded for at least 1 h after immersion to reach a stable 
value before the potentiodynamic polarization tests. The potentiodynamic tests were per-
formed at a scan rate of 1 mV/s in the potential range of −0.5 to 1.5 V with respect to Pt 
pseudo-reference electrode. Three tests were performed for each condition.  

Table 1. Concentration of main impurities in NaCl-KCl-MgCl2 eutectic salt before corrosion test (i.e., 
immediately following salt pre-conditioning) determined by ICP-OES. 

 Cr [ppm] Fe [ppm] Ni [ppm] Co [ppm] Si [ppm] Al [ppm] 
NaCl-KCl-MgCl2 ≤15 ≤50 ≤10 ≤10 ≤125 ≤65 

Scanning electron microscopy (SEM, FEI Quanta-ESEM 200) equipped with energy 
dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) were per-
formed to analyze the microstructure and volume fraction of phases present in the alloys. 
The crystal structure of the alloys and corrosion products were determined by X-ray dif-
fraction (XRD) using a Rigaku Ultima X-ray diffractometer with 1.54 Å Cu-Kα radiation 
and a scattering angle in the range of 20° to 90°. A scanning kelvin probe (SKP) microscope 
(Princeton Applied Research) was used to measure the relative work function distribution 
or Volta potential over the surface. A tungsten wire with a perpendicular amplitude of 30 
µm with respect to the samples at a frequency of 80 Hz was used as a reference probe 
during SKP measurements. Work function was determined at a tip to sample separation 
of 50 µm in lab air (RH 55%). 

 
Figure 1. (a) Schematic illustration and (b) experimental set-up of three-electrode tube furnace used 
in the present study for corrosion test in molten NaCl-KCl-MgCl2 salt at 450 °C and 650 °C. 
Figure 1. (a) Schematic illustration and (b) experimental set-up of three-electrode tube furnace used
in the present study for corrosion test in molten NaCl-KCl-MgCl2 salt at 450 ◦C and 650 ◦C.

Table 1. Concentration of main impurities in NaCl-KCl-MgCl2 eutectic salt before corrosion test (i.e.,
immediately following salt pre-conditioning) determined by ICP-OES.

Cr [ppm] Fe [ppm] Ni [ppm] Co [ppm] Si [ppm] Al [ppm]

NaCl-KCl-MgCl2 ≤15 ≤50 ≤10 ≤10 ≤125 ≤65

Open circuit potential (OCP) and potentiodynamic polarization tests were conducted
for each alloy. The OCP was recorded for at least 1 h after immersion to reach a stable
value before the potentiodynamic polarization tests. The potentiodynamic tests were
performed at a scan rate of 1 mV/s in the potential range of −0.5 to 1.5 V with respect to Pt
pseudo-reference electrode. Three tests were performed for each condition.

Scanning electron microscopy (SEM, FEI Quanta-ESEM 200) equipped with energy
dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) were performed
to analyze the microstructure and volume fraction of phases present in the alloys. The
crystal structure of the alloys and corrosion products were determined by X-ray diffraction
(XRD) using a Rigaku Ultima X-ray diffractometer with 1.54 Å Cu-Kα radiation and a
scattering angle in the range of 20◦ to 90◦. A scanning kelvin probe (SKP) microscope
(Princeton Applied Research) was used to measure the relative work function distribution
or Volta potential over the surface. A tungsten wire with a perpendicular amplitude of
30 µm with respect to the samples at a frequency of 80 Hz was used as a reference probe
during SKP measurements. Work function was determined at a tip to sample separation of
50 µm in lab air (RH 55%).
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3. Results
3.1. Microstructural Characterization

The as-cast microstructures of AlCoCrFeNi2.1 and DS2205 are shown in Figure 2a–f.
The microstructure of AlCoCrFeNi2.1 consisted of lamellar arrangement of FCC (L12—light
contrast) and BCC (B2—dark contrast) solid solution phases (Figure 2a) with an average
grain size of ~75 ± 25 µm. Similarly, DS2205 showed a lamellar morphology of FCC
(γ austenite—light contrast) and BCC (α ferrite—dark contrast) phases (Figure 2e) with
an average grain size of ~110 ± 35 µm. The EBSD phase map in Figure 2b shows the
lamellar structure of AlCoCrFeNi2.1 with FCC (red color ~77%) and BCC (green color
~23%) phases, while Figure 2f shows the corresponding map for DS2205. The EDS map
of the as-cast AlCoCrFeNi2.1 is shown in Figure 2c. The BCC phase was found to be rich
in Ni and Al, while the FCC phase was rich in Co, Cr, and Fe. Similarly, the EDS map
of DS2205 in Figure 2g shows that the FCC (γ—Austenite) phase is rich in Ni and the
BCC (α—Ferrite) phase is rich in Cr and Mo. The XRD pattern in Figure 2d of as-cast
AlCoCrFeNi2.1 confirmed its dual-phase microstructure consisting of FCC-L12 and BCC-B2
phases. Corresponding XRD pattern for DS2205 in Figure 2h confirmed its dual-phase
FCC-BCC microstructure. The chemical composition of each phase in AlCoCrFeNi2.1 and
DS2205, as well as the overall composition, are summarized in Table 2. The differences in
the fraction of relatively nobler elements (e.g., Co, Cr, and Ni) between the two phases in
AlCoCrFeNi2.1 is significantly larger than in DS2205.
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Table 2. Chemical composition (at. %) of the phases in AlCoCrFeNi2.1 and DS2205.

AlCoCrFeNi2.1 (at. %) DS2205 (at. %)

Element FCC L12 BCC B2 Nominal Comp. Element FCC γ—Austenite BCC α—Ferrite Nominal Comp.

Al 6.4 ± 0.3 15.7 ± 0.7 16.4 Cr 21.6 ± 0.7 24.8 ± 0.3 22.24

Co 18.4 ± 0.3 15.1 ± 0.2 16.4 Mo 2.1 ± 0.1 4.1 ± 0.2 3.18

Cr 23.1 ± 0.4 14.3 ± 0.3 16.4 Ni 6.9 ± 0.5 4.2 ± 0.3 5.75

Fe 20.5 ± 0.4 14.9 ± 0.2 16.4 Mn 1.9 ± 0.2 1.6 ± 0.4 1.86

Ni 31.6 ± 0.5 40.3 ± 0.7 34.4
Si 0.7 ± 0.2 0.5 ± 0.1 0.77

Fe 64.3 ± 0.7 66.5 ± 0.6 Balance

3.2. Electrochemical and Corrosion Behavior

Open circuit potential for the two alloys at 450 ◦C and 650 ◦C is shown in Figure 3a.
DS2205 and AlCoCrFeNi2.1 showed stable potential, which gradually increased towards a
more noble value and lower fluctuations after ~1 h of exposure in the molten chloride salt
at 450 ◦C. At 650 ◦C, both the alloys showed relatively poor stability for the first 30 min,
suggesting that an increase in temperature might have resulted in the unstable growth of
surface oxide initially, before reaching steady state. Figure 3b shows the potentiodynamic
polarization curves for the two alloys after stable OCP at the temperatures of 450 ◦C
and 650 ◦C. The corrosion current density (Icorr) for the two alloys was determined from
Tafel analysis and is summarized in Table 3. The Icorr value increased with an increase
in temperature for both alloys, indicating the high dissolution rate and relatively poor
protective nature of their surface passivation layer. AlCoCrFeNi2.1 showed lower Icorr
at 650 ◦C compared to DS2205, demonstrating its excellent corrosion resistance at the
higher temperature.

Table 3. Corrosion potential (Ecorr), corrosion current density (Icorr), and corrosion rate (CR) of
AlCoCrFeNi2.1 and DS2205 alloys in NaCl-2KCl-MgCl2 salt at 450 ◦C and 650 ◦C.

450 ◦C 650 ◦C

Ecorr (V) Icorr (A.cm−2) CR (Equation (1))
(mm/year)

CR (Equation (2))
(mm/year) Ecorr (V) Icorr (A.cm−2) CR (Equation (1))

(mm/year)
CR (Equation (2))

(mm/year)

AlCoCrFeNi2.1 −0.26 0.17 × 10−3 1.18 ± 1 3.58 −0.13 1.4 × 10−3 9.2 ± 1 15.67

DS2205 −0.59 0.46 × 10−3 4.78 ± 1 9.5 −0.18 1.9 × 10−3 19.86 ± 1 32.84
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at 450 ◦C and 650 ◦C; (b) potentiodynamic polarization curves of the alloys at 450 ◦C and 650 ◦C,
showing better corrosion resistance of AlCoCrFeNi2.1 at 450 ◦C and 650 ◦C compared to DS2205.
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Corrosion rates (CR) based on Icorr and Mass loss for the two alloys was calculated
from the following equations [36,40]:

CR
(

mm
year

)
= K1 ∗

Icorr × EW
ρ

(1)

where K1 = 3.27 × 10−3 [mm/(µA·cm·year)] is a constant which is taken from ASTM G102;
EW is equivalent weight in g/equivalent; ρ is density in g/cm3; and Icorr is corrosion
current density in µA/cm2.

CR =
k.mloss
A.t.ρ

(2)

where k is constant 8.76 × 104; CR is in (mm/y), which is taken from ASTM G31; mloss
is the mass loss (g) of the metal in time t (h); A is the surface area of the material ex-
posed (cm2); and ρ is the density of the material (g/cm3). The corrosion rate based
on Equations (1) and (2) for the two alloys at 450 ◦C and 650 ◦C are shown in Table 3.
AlCoCrFeNi2.1 showed a significantly lower corrosion rate compared to DS2205 at both
the temperatures. Poor stability of Fe-based alloys at elevated temperatures in molten
chloride media due to dissolution of Cr and Fe has been reported previously [38,41]. In
contrast, AlCoCrFeNi2.1 high-entropy alloy showed a higher corrosion resistance compared
to dual-phase DS2205 steel possibly, due to greater stability of its constituent elements in
the molten chloride salt environment.

Mass loss measurements based on immersion study was performed for determining
material loss due to corrosion. Figure 4 shows the mass loss (mg/cm2) of the EHEA
and DS2205 alloys after immersion in NaCl-KCl-MgCl2 at 450 ◦C and 650 ◦C for 24 h.
Greater material loss was observed with an increase in temperature, which supports the
potentiodynamic study (Table 3). At 450 ◦C, mass loss for DS2205 was ~24 mg/cm2

after 24 h, which was slightly higher than AlCoCrFeNi2.1 (~19 mg/cm2 after 24 h). At
650 ◦C, mass loss drastically increased for DS2205 to ~69 mg/cm2 after 24 h compared to
~38 mg/cm2 for AlCoCrFeNi2.1. Figure 4 shows the lower mass loss for AlCoCrFeNi2.1 as
compared with DS2205 at both temperatures, suggesting superior corrosion resistance of
the EHEA.
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Figure 5a,b show the optical microscopy images of AlCoCrFeNi2.1 and DS2205 after
corrosion tests at 450 ◦C and 650 ◦C, respectively. SEM images of the surfaces after corrosion
are shown in Figure 5c–f. Selective dissolution of the B2 phase in AlCoCrFeNi2.1 was
observed at 450 ◦C (Figure 5c). DS2205 showed preferential pitting in the BCC (α—Ferrite)
regions while the FCC (γ—Austenite) phase was relatively intact (Figure 5d). At 650 ◦C,
uniform pitting was observed all over the surface for AlCoCrFeNi2.1 (Figure 5e) in contrast
to severe material loss from selective removal of the BCC (α—Ferrite) phase in DS2205
(Figure 5f). Previous studies suggest that the relative chemistry difference and phase
volume fraction (FCC:BCC) determine the degree of degree of galvanic coupling in dual-
phase alloys [27,42–45]. At 650 ◦C, duplex steel has been reported to show chloride-induced
severe corrosion due to preferential attack of its ferrite phase [46]. The high-magnification
SEM images in Figure 5c–f demonstrate the galvanic coupling in both AlCoCrFeNi2.1 and
DS2205, with dual-phase microstructure, albeit to different extents.
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Figure 5. Optical images for (a) AlCoCrFeNi2.1 and (b) DS2205 after electrochemical corrosion
experiments in molten NaCl-KCl-MgCl2 salt; SEM image of the corroded surface at 450 ◦C for
(c) AlCoCrFeNi2.1 EHEA and (d) DS2205; SEM image of the corroded surface at 650 ◦C for
(e) AlCoCrFeNi2.1 EHEA and (f) DS2205. The insets in figures (c) through (f) show zoomed-in
view of the corroded surfaces indicating selective removal of B2 phase in AlCoCrFeNi2.1 and BCC
phase in DS2205 because of galvanic coupling.

4. Discussions
4.1. Effect of Alloy Composition on Molten Salt Corrosion Behavior

The cross-sectional morphology and element distribution of the AlCoCrFeNi2.1 and
DS2205 samples are shown in Figure 6a–d by the EDS elemental maps, after immersion in
molten salt at both the temperatures. For both the alloys, there was selective dissolution of
some alloying elements and selective oxidation of BCC phase (B2—AlCoCrFeNi2.1 and α

Ferrite—DS2205) near the surface at 450 ◦C and 650 ◦C (Figure 6). The BCC phase oxidized
faster than FCC, suggesting that the BCC phase acted as micro-anodic sites with respect to
the FCC phase. In AlCoCrFeNi2.1, it is noted that at 650 ◦C the concentration of Al, Cr, and
to a lesser extent, Fe decreased (depletion), while the concentration of Co and Ni increased
(enrichment). Cr depletion has been reported to be the primary form of material loss in
Fe-based alloys exposed to chloride-environment [41,47]. In addition, Al loss is expected
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from AlCoCrFeNi2.1 because of greater stability of AlCl3 in the molten salt. At 450 ◦C
and 650 ◦C, it is apparent from EDS maps shown in Figure 6 that Al and Cr are depleted
from AlCoCrFeNi2.1. Although both AlCoCrFeNi2.1 and DS2205 alloys have similar Cr
concertation (~20 at. %), DS2205 showed greater mass loss at both temperatures compared
to AlCoCrFeNi2.1. This may be attributed to the presence of Al in AlCoCrFeNi2.1 that
hinders the dissolution of the other alloy constituents in the molten salt [20]. In particular,
the Cr depletion was significantly greater for DS2205 compared to AlCoCrFeNi2.1. At
450 ◦C, the Cr depletion depth in in AlCoCrFeNi2.1 was ~30 µm, while that for DS2205 was
~200 µm. Cr depletion depth increased significantly in DS2205 compared to AlCoCrFeNi2.1,
with an increase in temperature from 450 ◦C to 650 ◦C. At 650 ◦C, the Cr depletion depth
for AlCoCrFeNi2.1 was ~50 µm, while that for DS2205 was ~300 µm. This suggests that
Al in the AlCoCrFeNi2.1 acted as a sacrificial element and reduced Cr dissolution rate
in the molten salt compared to DS2205. Redox control technique has been utilized for
corrosion mitigation in molten fluoride and chloride salts [48]. Dissolution of Al and Cr
into the molten salt resulted in the formation of AlCl3 and CrCl2, which formed a redox
couple of Al/AlCl3 and Cr/CrCl2. At the redox potential, Co, Ni, and Fe become relatively
nobler and their dissolution is thermodynamically unfavorable. These findings suggest that
Al/AlCl3 and Cr/CrCl2 couple may be used as redox buffer to slow or stop the dissolution
of Fe, Co, and Ni from AlCoCrFeNi2.1 [49].

Entropy 2023, 25, x FOR PEER REVIEW 10 of 16 
 

 

depletion depth for AlCoCrFeNi2.1 was ~50 µm, while that for DS2205 was ~300 µm. This 
suggests that Al in the AlCoCrFeNi2.1 acted as a sacrificial element and reduced Cr disso-
lution rate in the molten salt compared to DS2205. Redox control technique has been uti-
lized for corrosion mitigation in molten fluoride and chloride salts [48]. Dissolution of Al 
and Cr into the molten salt resulted in the formation of AlCl3 and CrCl2, which formed a 
redox couple of Al/AlCl3 and Cr/CrCl2. At the redox potential, Co, Ni, and Fe become rel-
atively nobler and their dissolution is thermodynamically unfavorable. These findings 
suggest that Al/AlCl3 and Cr/CrCl2 couple may be used as redox buffer to slow or stop the 
dissolution of Fe, Co, and Ni from AlCoCrFeNi2.1 [49]. 

 
Figure 6. Cross section EDS maps of the near-surface composition of alloys exposed to molten NaCl-
KCl-MgCl2 for (a) AlCoCrFeNi2.1 at 450 °C, (b) DS2205 at 450 °C, (c) AlCoCrFeNi2.1 at 650 °C, and 
(d) DS2205 at 650 °C. 

The chemical composition of an alloy determines the thermodynamic driving force 
for reaction between the molten salt and the alloy constituents [50]. Corrosion of an alloy 
in NaCl-KCl-MgCl2 molten salt is governed by the difference in Gibbs free energy of for-
mation (ΔGo) for the salt constituents (NaCl, KCl, MgCl2) and corrosion products in the 
form of chlorides of the alloying elements (e.g., AlCl3, CrCl2, MnCl2, SiCl4, etc). Corrosion 
products with lower values of ΔGo are more likely to form and the associated alloying 
elements are likely to preferentially react with the salt and selectively leach out from the 
alloy. This leads to thermodynamic driving force for selective depletion of the alloying 
elements, i.e., dealloying at the surface [49,51]. The interaction between chlorides and 
moisture impurity in the salt results in the formation of highly corrosive HCl and metal 
oxides/hydroxides [49,51]: 𝑀𝐶𝑙ሺ𝑙ሻ ൅ 𝐻ଶ𝑂 → 𝑀𝑂𝐻ሺ𝑙ሻ ൅ 𝐻𝐶𝑙ሺ𝑔ሻ (3)

The generated HCl reacts with the constituent elements of the alloy to form soluble 
metal chlorides as follows: 𝑀௘ ൅ 2𝐻𝐶𝑙ሺ𝑙ሻ → 𝑀௘𝐶𝑙ଶ ൅ 𝐻ଶሺ𝑔ሻ  (4)

where Me is an alloying element (e.g., Al, Co, Cr, Fe, Mn, Si, etc.). Thermodynamic calcu-
lations were employed using FactSage (version 7.3, FactPS database, Montreal, Canada) 
to determine the potential reactions at high temperatures [48,51,52]. Based on ΔGo for for-
mation of chloride corrosion products shown in Error! Reference source not found. (cal-
culations at 450 °C and 650 °C), the alloying elements present in AlCoCrFeNi2.1 are 

Figure 6. Cross section EDS maps of the near-surface composition of alloys exposed to molten
NaCl-KCl-MgCl2 for (a) AlCoCrFeNi2.1 at 450 ◦C, (b) DS2205 at 450 ◦C, (c) AlCoCrFeNi2.1 at 650 ◦C,
and (d) DS2205 at 650 ◦C.

The chemical composition of an alloy determines the thermodynamic driving force
for reaction between the molten salt and the alloy constituents [50]. Corrosion of an alloy
in NaCl-KCl-MgCl2 molten salt is governed by the difference in Gibbs free energy of
formation (∆G◦) for the salt constituents (NaCl, KCl, MgCl2) and corrosion products in the
form of chlorides of the alloying elements (e.g., AlCl3, CrCl2, MnCl2, SiCl4, etc). Corrosion
products with lower values of ∆G◦ are more likely to form and the associated alloying
elements are likely to preferentially react with the salt and selectively leach out from the
alloy. This leads to thermodynamic driving force for selective depletion of the alloying
elements, i.e., dealloying at the surface [49,51]. The interaction between chlorides and
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moisture impurity in the salt results in the formation of highly corrosive HCl and metal
oxides/hydroxides [49,51]:

MCl(l) + H2O → MOH(l) + HCl(g) (3)

The generated HCl reacts with the constituent elements of the alloy to form soluble
metal chlorides as follows:

Me + 2HCl(l)→ MeCl2 + H2(g) (4)

where Me is an alloying element (e.g., Al, Co, Cr, Fe, Mn, Si, etc.). Thermodynamic calcula-
tions were employed using FactSage (version 7.3, FactPS database, Montreal, Canada) to
determine the potential reactions at high temperatures [48,51,52]. Based on ∆G◦ for forma-
tion of chloride corrosion products shown in Figure 7 (calculations at 450 ◦C and 650 ◦C),
the alloying elements present in AlCoCrFeNi2.1 are expected to show high reactivity with
the molten salt in the following order: Al > Cr > Fe > Co > Ni. This indicates that depletion
of Al is the most favorable thermodynamically, leading to the formation of AlCl3. Similarly,
for DS2205, alloying elements are expected to show high reactivity with the molten salt in
the following order: Si > Mn > Cr > Fe > Ni > Mo. Thus, depletion of Si is most favorable
thermodynamically in the case of DS2205, leading to the formation of SiCl4. Trace amount
of salt impurities (Table 1) in NaCl-KCl-MgCl2 may also have contributed towards the
relative dissolution rates of the alloying elements in the molten salt.
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Metallic chloride impurities (e.g., NiCl2, FeCl2, CoCl2), commonly present in NaCl-
KCl-MgCl2 molten salt, may react with the alloying elements, leading to their dissolution
in the melt. Ni, Co, and Fe impurity chlorides may cause depletion of Cr via the following
substitution (oxidation-reduction) reactions [49,50]:

NiCl2(l) + Cr(s)→ CrCl2 + Ni(s) (5)

FeCl2(l) + Cr(s)→ CrCl2 + Fe(s) (6)

CoCl2(l) + Cr(s)→ CrCl2 + Co(s) (7)
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Figure 6a,c shows that there is enrichment of Co and Ni (and to some degree Fe) in
the near-surface region even more than the bulk alloy, suggesting that Co, Ni, and Fe may
be enriched in the Al and Cr depleted regions. Ni2+, Co2+, and Fe2+ ions were reduced to
atomic Ni, Co, and Fe at the surface and their diffusion was likely assisted by vacancies
created during depletion of Al and Cr. However, similar effects were not observed in case
of DS2205 duplex steel, possibly because of the lack of stable redox couple of Al/AlCl3
and Cr/CrCl2. In addition, there was significant depletion of the refractory element Mo
from DS2205, as shown in Figure 6b,d. Figure 7 shows relatively high ∆G◦ for MoCl2, so
depletion of Mo due to chloride formation is not expected. Hence, depletion of Mo in
DS2205 may be caused by direct reaction with moisture and oxide impurities, resulting in
the formation of unstable or volatile metallic oxides as follows [53]:

xMo(s) + yH2O(g)→ MoxOy + yH2(g) (8)

4.2. Effect of Alloy Microstructure on Molten Salt Corrosion Behavior

To explain the effect of eutectic microstructure on the molten salt corrosion behavior,
scanning kelvin probe (SKP) was utilized to evaluate the relative work function (WF)
behavior on the surface of the alloys [27,37]. The WF may be directly related to the ability
for charge transfer and represents the relative nobility of a metal surface [54]. SKP potential
measured in air for several metals was found to vary linearly with their corrosion potential
in aqueous solution [36,55]. Phase-specific work function for the as-cast AlCoCrFeNi2.1
and DS2205 was measured to understand the micro-galvanic corrosion and to investigate
the change in galvanic activity between L12 and B2 in AlCoCrFeNi2.1 and between FCC
and BCC in DS2205. Respective SKP maps are shown for DS2205 in Figure 8a and for
AlCoCrFeNi2.1 in Figure 8b.
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the phases to delineate the potential changes in (a) as-cast DS2205 and (b) as-cast AlCoCrFeNi2.1.
Schematic illustration of the mechanism of galvanic corrosion for (c) the AlCoCrFeNi2.1 alloy Ni-rich
BCC-B2 phase in the vicinity of FCC-L12; (d) the DS2205 alloy Cr-Mo-rich BCC phase in the vicinity
of Ni-rich FCC phase.
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The color contrast in the topographical plot indicates the relative work function
potential contrast difference between the FCC and BCC phases. The FCC phase (red-colored
areas) in AlCoCrFeNi2.1 (L12) and DS2205 (FCC) showed higher relative work function
compared to the corresponding BCC phase (green-blue-colored areas) in AlCoCrFeNi2.1 (B2)
and DS2205 (BCC). The potential contrast difference between the phases in AlCoCrFeNi2.1
was approximately ~50 mV, while in the case of DS2205 it was ~35 mV, which explains the
selective dissolution seen from the EDS maps, due to the micro-galvanic cell formation in
both the alloys. As schematically shown in Figure 8c,d, the high relative work function of
the L12 and FCC phase indicates their higher nobility compared to the B2 and BCC phase,
respectively, and agrees with the SEM-EDS data (Figures 5 and 6) of selective corrosion
of B2/BCC phase. Co-Cr-Fe-rich FCC-L12 may be considered the matrix in this alloy that
triggers anodic dissolution of the neighboring Al-Ni-rich B2 phase. It has been reported
previously that Cr-Mo-rich α—Ferrite (BCC) (Table 2) is considered anodic with respect
to Ni-rich γ—Austenite (FCC) (Table 2), which is cathodic in DS2205. The overall relative
work function potential of AlCoCrFeNi2.1 alloy (average ~50 mV) was higher compared to
DS2205 alloy (average ~−65 mV), indicating the nobility of AlCoCrFeNi2.1 versus DS2205,
and agrees with the lower corrosion rate observed in AlCoCrFeNi2.1 rather than DS2205 at
both the temperatures.

5. Conclusions

The corrosion behavior of dual-phase AlCoCrFeNi2.1 (EHEA) and duplex stainless
steel 2205 (DS2205) was studied in NaCl-KCl-MgCl2 molten salt at 450 ◦C and 650 ◦C.
AlCoCrFeNi2.1 EHEA showed superior molten salt corrosion resistance than DS2205, which
was attributed to the following:

(i) Higher Ni content in EHEA and sacrificial role of Al in reducing outward diffusion of
Cr, Fe, and Ni in AlCoCrFeNi2.1 and the different reactivity of formation of chlorides,
as well as enrichment of Co and Ni in the corrosion layer.

(ii) Thermodynamically driven corrosion between alloying elements and molten salt
constituents or impurities present within the melt. Metallic impurities such as Ni2+,
Fe2+, and Co2+ enhance the corrosion resistance of AlCoCrFeNi2.1 via enrichment
of impurity ions such as Ni, Co, and Fe (to lesser extent) in the corrosion layer as
temperature increases.

(iii) A lower volume fraction of the BCC phase, which makes it less prone to galvanic
corrosion. The phase-specific work function for the as-cast AlCoCrFeNi2.1 and DS2205
suggested micro-galvanic corrosion, with nobler L12 and FCC phase in EHEA and DS
2205, respectively, compared to the B2 and BCC phases.
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