Probability Distributions Describing Qubit-State Superpositions
Abstract
:1. Introduction
2. Hilbert Spaces and Quantizer–Dequantizer Operator Formalism
3. Qubit Probability Distributions
3.1. Conditional Probability Distributions of the Pure Qubit State
3.2. Product of Probability Distributions of Two-Qubit States
3.3. Notation for Separable and Entangled Probability Distributions
4. Dequantizer Operator for Qubit State
5. Unitary Transforms of Probability Distributions Determining Spin States
6. Superposition of Probabilities
7. Probability Distributions Determined by Different Pairs of Quantizer–Dequantizer Operators
8. Entangled Two-Qubit Probability Distributions
9. Separable Probability Distributions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kolmogorov, A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung; Julius Springer: Berlin/Heidelberg, Germany, 1933. [Google Scholar]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; North-Holland: Amsterdam, The Netherlands, 1982; ISBN 0-444-86333-8. [Google Scholar]
- Khrennikov, A. Non-Kolmogorov probability models and modified Bell’s inequality. J. Math. Phys. 2000, 41, 1768–1777. [Google Scholar] [CrossRef]
- Khrennikov, A. Interpretations of Probability, 2nd ed.; Walter de Gruyter: Göttingen, Germany, 2009; ISBN 3110213192/9783110213195. [Google Scholar]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Bell, J.S. Speakable and Unspeakable in Quantum Mechanics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Basieva, I.; Khrennikov, A. Conditional probability framework for entanglement and its decoupling from tensor product structure. J. Phys. A Math.Theor. 2022, 55, 395302. [Google Scholar] [CrossRef]
- Svozil, K. Are simultaneous Bell measurements possible? New J. Phys. 2006, 8, 39. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1981; ISBN 978019852011. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics—Non-Relativistic Theory, 3rd ed.; Elsevier: Oxford, UK, 1981; ISBN 9780750635394. [Google Scholar]
- Landau, L. Das Dämpfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430. [Google Scholar] [CrossRef]
- Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749. [Google Scholar] [CrossRef]
- Stratonovich, R.L. On distributions in representation space. Zh. Éksp. Teor. Fiz. 1957, 31, 1012, [English translation: Sov. Phys. J. Exp. Theor. Phys. 1957, 4, 891–898]. [Google Scholar]
- Plebanski, J.F.; Przanowski, M.; Turrubiates, F.J. Weyl–Underhill–Emmrich quantization and the Stratonovich–Weyl quantizer. J. Phys. A Math. Gen. 2000, 33, 795–804. [Google Scholar] [CrossRef]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 1996, 213, 1. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Positive distribution description for spin states. Phys. Lett. A 1997, 229, 335–339. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Alternative commutation relations, star products and tomography. J. Phys. A Math. Gen. 2002, 35, 699. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Star-product of generalized Wigner–Weyl symbols on SU(2) group, deformations, and tomographic probability distribution. Phys. Scr. 2000, 62, 446–452. [Google Scholar] [CrossRef]
- De Gosson, M.A. Symplectic Radon transform and the metaplectic representation. Entropy 2022, 24, 761. [Google Scholar] [CrossRef] [PubMed]
- Przhiyalkovskiy, Y.V. Quantum process in probability representation of quantum mechanics. J. Phys. A Math. Gen. 2022, 55, 085301. [Google Scholar] [CrossRef]
- Asorey, M.; Ibort, A.; Marmo, G.; Ventriglia, F. Quantum tomography twenty years later. Phys. Scr. 2015, 90, 074031. [Google Scholar] [CrossRef]
- Lopez-Saldivar, J.A.; Man’ko, M.A.; Man’ko, V.I. Measurement of the temperature using the tomographic representation of thermal states for quadratic Hamiltonians. Entropy 2021, 23, 1445. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Tcherniega, N.V. Tomographic description of stimulated Brillouin scattering of light. J. Russ. Laser Res. 2001, 22, 201–218. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I. Probability representation of quantum states. Entropy 2021, 23, 549. [Google Scholar] [CrossRef]
- Adam, P.; Andreev, V.A.; Man’ko, M.A.; Man’ko, V.I.; Mechler, M. SU(2) symmetry of qubit states and Heisenberg-Weyl symmetry of systems with continuous variables in the probability representation of quantum mechanics. Symmetry 2020, 12, 1099. [Google Scholar] [CrossRef]
- Born, M. Quantenmechanik der Stoßvorgänge. Z. Fur Phys. 1926, 37, 863–867. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Dynamical aspects in the quantizer–dequantizer formalism. Ann. Phys. 2017, 385, 769–781. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. Observables, interference phenomenon and Born’s rule in the probability representation of quantum mechanics. Int. J. Quantum Inf. 2020, 18, 1941021. [Google Scholar] [CrossRef]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of semiclassical and quantum-mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, O.V. Dynamics of system states in the probability representation of quantum mechanics. Entropy 2023, 25, 785. [Google Scholar] [CrossRef]
- Loubenets, E.R.; Kulakov, M.S. The Bloch vectors formalism for a finite-dimensional quantum system. J. Phys. A Math. Theor. 2021, 54, 195301. [Google Scholar] [CrossRef]
- Loubenets, E.R.; Khrennikov, A.Y. Quantum analog of the original Bell inequality for two-qudit states with perfect correlations/anticorrelations. J. Phys. A Math. Theor. 2021, 52, 435304. [Google Scholar] [CrossRef]
- Loubenets, E.R. The generalized Gell-Mann representation and violation of the CHSH inequality by a general two-qudit state. J. Phys. A Math. Theor. 2020, 53, 045303. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Mendes, R.V. Non-commutative time-frequency tomography. Phys. Lett. A 1999, 263, 53–61. [Google Scholar] [CrossRef]
- Adam, P.; Andreev, V.A.; Man’ko, M.A.; Man’ko, V.I.; Mechler, M. Properties of quantizer and dequantizer operators for qudit states and parametric down-conversion. Symmetry 2021, 13, 131–147. [Google Scholar] [CrossRef]
- Marmo, G. Quantum Tomography, Resource Papers, Centro de Ciencias de Benasque Pedro Pascual, Spain. Available online: www.benasque.org/2012msqs/talks_contr/0912_Manko.pdf (accessed on 27 August 2023).
- Marmo, G.; de Diego, D.M.; Lecanda, M.M. (Eds.) Classical and Quantum Physics, 60 Years Alberto Ibort Fest Geometry, Dynamics, and Control, Springer Proceedings in Physics; Springer: Cham, Switzerland, 2019; Volume 229. [Google Scholar]
- Plotnitsky, A.; Haven, E. (Eds.) The Quantum-Like Revolution: A Festschrift for Andrei Khrennikov; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Stornaiolo, C. Tomographic cosmology. Phys. Scr. 2015, 90, 074032. [Google Scholar] [CrossRef]
- Stornaiolo, C. Tomographic represention of quantum and classical cosmology. Astrophys. Space Sci. Proc. 2014, 38, 211–219. [Google Scholar]
- Amosov, G. On quantum tomography on locally compact groups. arXiv 2022, arXiv:2201.06049. [Google Scholar] [CrossRef]
- Amosov, G.G.; Korennoy, Y.A. On definition of quantum tomography via the Sobolev embedding theorem. Lobachevskii J. Math. 2019, 40, 1433–1439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man’ko, M.A.; Man’ko, V.I. Probability Distributions Describing Qubit-State Superpositions. Entropy 2023, 25, 1366. https://doi.org/10.3390/e25101366
Man’ko MA, Man’ko VI. Probability Distributions Describing Qubit-State Superpositions. Entropy. 2023; 25(10):1366. https://doi.org/10.3390/e25101366
Chicago/Turabian StyleMan’ko, Margarita A., and Vladimir I. Man’ko. 2023. "Probability Distributions Describing Qubit-State Superpositions" Entropy 25, no. 10: 1366. https://doi.org/10.3390/e25101366