An Internet-Oriented Multilayer Network Model Characterization and Robustness Analysis Method
Abstract
:1. Introduction
2. Model and Method
2.1. Internet-Oriented Multilayer Network Model Construction
2.2. Semantic Representation of a Multilayer Network Model for the Internet
2.3. Description of Interdependent Relationships in a Multilayer Network Model
3. Heuristic Generation Algorithm for Multilayer Networks
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barabasi, A.L. Scale-free network. Sci. Am. 2003, 288, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.A.N.; Scala, A.; Barthelemy, M.; Stanley, H.E. Classes of small-world networks. Proc. Natl. Acad. Sci. USA 2000, 97, 11149–11152. [Google Scholar] [CrossRef] [PubMed]
- Jarillo, J.; Cao-García, F.J.; De Laender, F. Spatial and ecological scaling of stability in spatial community networks. arXiv 2022, arXiv:2201.09683. [Google Scholar] [CrossRef]
- Miyawaki-Kuwakado, A.; Komori, S.; Shiraishi, F. A promising method for calculating true steady-state metabolite concentrations in large-scale metabolic reaction network models. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Berenbrink, P.; Hoefer, M.; Kaaser, D.; Lenzner, P.; Rau, M.; Schm, D. Asynchronous opinion dynamics in social networks. arXiv 2022, arXiv:2201.12923. [Google Scholar]
- Wang, Z.; Delahaye, D.; Farges, J.L.; Alam, S. Air traffic assignment for intensive urban air mobility operations. J. Aerosp. Comput. Inf. Commun. 2021, 18, 860–875. [Google Scholar] [CrossRef]
- Shvedov, A.V.; Nazarov, M.J. Methods for improving the efficiency of information and communication networks. In Proceedings of the 2020 International Conference on Engineering Management of Communication and Technology (EMCTECH), Vienna, Austria, 20–22 October 2020; pp. 1–5. [Google Scholar]
- Bollobás, B. Modern Graph Theory; Springer: New York, NY, USA, 1998. [Google Scholar]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef]
- Virkar, Y.; Clauset, A. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef]
- Gallotti, R.; Barthelemy, M. The multilayer temporal network of public transport in great britain. Sci. Data 2015, 2, 140056. [Google Scholar] [CrossRef]
- Liu, X.; Maiorino, E.; Halu, A.; Loscalzo, J.; Sharma, A. Robustness and lethality in multilayer biological molecular networks. Nat. Commun. 2020, 11, 6043. [Google Scholar] [CrossRef]
- Omodei, E.; De Domenico, M.; Arenas, A. Evaluating the impact of interdisciplinary research: A multilayer network approach. Netw. Sci. 2016, 5, 235–246. [Google Scholar] [CrossRef]
- De Domenico, M.; Granell, C.; Porter, M.A.; Arenas, A. The physics of spreading processes in multilayer networks. Nat. Phys. 2016, 12, 901–906. [Google Scholar] [CrossRef]
- Magnani, M.; Wasserman, S. Introduction to the special issue on multilayer networks. Netw. Sci. 2017, 5, 141–143. [Google Scholar] [CrossRef]
- Kivel, A.M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks. SSRN Electron. J. 2013, 2, 203–271. [Google Scholar] [CrossRef]
- Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C.I.; Gómez-Gardenes, J. The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122. [Google Scholar] [CrossRef]
- Chowdhury, S.N.; Rakshit, S.; Buldu, J.M.; Ghosh, D.; Hens, C. Antiphase synchronization in multiplex networks with attractive and repulsive interactions. Phys. Rev. 2021, 103, 032310. [Google Scholar] [CrossRef]
- Zang, W.; Ji, X.; Liu, S.; Wang, G. Percolation on interdependent networks with cliques and weak interdependence. Phys. Stat. Mech. Appl. 2021, 566, 125612. [Google Scholar] [CrossRef]
- Hou, Y. Interference Mitigation in Multi-Hop Wireless Networks with Advanced Physical-Layer Techniques; Utah State University: Logan, UT, USA, 2016. [Google Scholar]
- Mei, H. Evolutionary network of business models studies and applications in emerging economies. Singap. Econ. Rev. 2020, 67, 1005–1028. [Google Scholar]
- Tapaskar, V.; Math, M.M. Deep recurrent gaussian nesterovs recommendation using multi-agent in social networks. Evol. Syst. 2022, 13, 435–452. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Barthelemy, M. Betweenness centrality. In Spatial Networks; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Crescenzi, P.; D’angelo, G.; Severini, L.; Velaj, Y. Greedily improving our own closeness centrality in a network. Acm Trans. Knowl. Discov. Data 2016, 11, 1–32. [Google Scholar] [CrossRef]
- Chalancon, G.; Kai, K.; Babu, M.M. Clustering Coefficient; Springer: New York, NY, USA, 2013. [Google Scholar]
- Hui, Y.; Liu, Z.; Li, Y. Using Local Improved Structural Holes Method to Identify Key Nodes in Complex Networks. In Proceedings of the 2013 Fifth International Conference on Measuring Technology and Mechatronics Automation, Hong Kong, China, 16–17 January 2013. [Google Scholar]
- Xiao, F.; Li, J.; Wei, B.; Dawson, K.A.; Indekeu, J.O.; Stanley, H.E.; Tsallis, C. Cascading failure analysis and critical node identification in complex networks. Phys. Stat. Mech. Its Appl. 2022, 596, 127117. [Google Scholar] [CrossRef]
- Ru, X.; Xu, X.; Zhou, Y.; Yang, C. Critical segments identification for link travel speed prediction in urban road network. J. Adv. Transp. 2020, 2020, 8845804. [Google Scholar] [CrossRef]
- Usman, M.; Javaid, N.; Abbas, S.M.; Javed, M.M.; Waseem, M.A.; Owais, M. A novel approach to network’s topology evolution and robustness optimization of scale free networks. In Proceedings of the Conference on Complex, Intelligent, and Software Intensive Systems, Asan, Korea, 1–3 July 2021. [Google Scholar]
- Tarawneh, A.S.; Hassanat, A.B.; Celik, C.; Chetverikov, D.; Rahman, M.S.; Verma, C. Deep face image retrieval: A comparative study with dictionary learning. In Proceedings of the 2019 10th International Conference on Information and Communication Systems (ICICS), Bangkok, Thailand, 25–27 March 2019; pp. 185–192. [Google Scholar]
- Ahmad, B.; Hassanat, A. Furthest-pair-based decision trees: Experimental results on big data classification. Information 2018, 9, 281. [Google Scholar]
Network Properties | Enterprise | Campus |
---|---|---|
N | 15,418 | 26,486 |
M | 80,176 | 140,724 |
3 | 3 | |
1260 | 1820 | |
1355 | 1864 | |
1200 | 1786 | |
13,034 | 22,994 | |
1200 | 22,880 | |
38,671 | 68,320 | |
1200 | 1786 | |
25,916 | 45,760 | |
1200 | 1786 | |
14,158 | 24,666 | |
12,958 | 22,880 | |
12,958 | 22,880 | |
38,902 | 68,512 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lu, Y.; Yang, G.; Hou, D.; Luo, Z. An Internet-Oriented Multilayer Network Model Characterization and Robustness Analysis Method. Entropy 2022, 24, 1147. https://doi.org/10.3390/e24081147
Zhang Y, Lu Y, Yang G, Hou D, Luo Z. An Internet-Oriented Multilayer Network Model Characterization and Robustness Analysis Method. Entropy. 2022; 24(8):1147. https://doi.org/10.3390/e24081147
Chicago/Turabian StyleZhang, Yongheng, Yuliang Lu, Guozheng Yang, Dongdong Hou, and Zhihao Luo. 2022. "An Internet-Oriented Multilayer Network Model Characterization and Robustness Analysis Method" Entropy 24, no. 8: 1147. https://doi.org/10.3390/e24081147
APA StyleZhang, Y., Lu, Y., Yang, G., Hou, D., & Luo, Z. (2022). An Internet-Oriented Multilayer Network Model Characterization and Robustness Analysis Method. Entropy, 24(8), 1147. https://doi.org/10.3390/e24081147