# Non-Additive Entropy Composition Rules Connected with Finite Heat-Bath Effects

^{1}

^{2}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Logarithm of the Formal Group

## 3. q Parameter in the Boltzmannian Approach

## 4. Optimal Restoration of Additivity

## 5. Fluctuations in Phase Space Dimension

## 6. Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Ideal Gas with Finite Heat-Bath

## Appendix B. Universal Thermostat Independence

## References

- Clausius, R. Théorie Mécanique de la Chaleur; Libraire Scientifique, Industrielle et Agricole, Série B, No. 2; Eugéne Lacroix: Paris, France, 1868. [Google Scholar]
- Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wien. Ber.
**1872**, 66, 275. [Google Scholar] - Boltzmann, L. Über die Beziehung einer allgemeine mechanischen Satzes zum zweiten Hauptsatze der Wärmetheorie. Sitzungsberichte K. Akad. Wiss. Wien
**1877**, 75, 67. [Google Scholar] - Gibbs, J.W. Elementary Principles in Statistical Mechanics; C. Scriber’s Sons: New York, NY, USA, 1902. [Google Scholar]
- Shannon, C. A mathematical theory of communication. Bell. Syst. Tech. J.
**1948**, 27, 379–423; ibid 623–656. [Google Scholar] [CrossRef][Green Version] - Renyi, A. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; Volume 1, pp. 547–561. [Google Scholar]
- Havrda, J.; Charvat, F. Quantification Method of Classification Processes. Concept of Structural Entropy. Kybernetika
**1967**, 3, 30–35. [Google Scholar] - Daróczy, Z. Generalized Information Functions. Inf. Control
**1970**, 16, 36. [Google Scholar] [CrossRef][Green Version] - Sharma, B.D.; Mittal, D.P. New nonadditive measures of inaccuracy. J. Math. Sci.
**1975**, 10, 122. [Google Scholar] - Nielsen, F.; Nock, R. A closed-form expression for the Sharma-Mittal entropy of exponential families. J. Phys. A
**2011**, 45, 032003. [Google Scholar] [CrossRef][Green Version] - Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys.
**1988**, 52, 479. [Google Scholar] [CrossRef] - Tsallis, C. Introduction to Non-Extensive Statistical Mechanics: Approaching a Complex World; Springer Science+Business Media LLC: New York, NY, USA, 2009. [Google Scholar]
- Tsallis, C. Nonadditive entropy: The concept and its use. EPJ A
**2009**, 40, 257–266. [Google Scholar] [CrossRef][Green Version] - Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. EPL
**2011**, 93, 20006. [Google Scholar] [CrossRef] - Hanel, R.; Thurner, S. When do generalized entropies apply? How phase space volume determines entropy. EPL
**2011**, 96, 50003. [Google Scholar] [CrossRef][Green Version] - Landsberg, P.T. Is equilibrium always an entropy maximum? J. Stat. Phys.
**1984**, 35, 159. [Google Scholar] [CrossRef] - Tisza, L. Generalized Thermodynamics; MIT Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Maddox, J. When entropy does not seem extensive. Nature
**1993**, 365, 103. [Google Scholar] [CrossRef] - Zapirov, R.G. Novije Meri i Metodi b Teorii Informacii; New Measures and Methods in Information Theory; Kazan State Tech University: Kazan, Russia, 2005; ISBN 5-7579-0815-7. [Google Scholar]
- Abe, S. Axioms and uniqueness theorem for Tsallis entropies. Phys. Lett. A
**2000**, 271, 74. [Google Scholar] [CrossRef] - Santos, R.J.V. Generalization of Shannon’s theorem for Tsallis entropy. J. Math. Phys.
**1997**, 38, 4104. [Google Scholar] [CrossRef] - Jensen, H.J.; Tempesta, P. Group Entropies: From Phase Space Geometry to Entropy Functionals via Group Theory. Entropy
**2018**, 20, 804. [Google Scholar] [CrossRef][Green Version] - Biro, T.S. Abstract composition rule for relativistic kinetic energy in the thermodynamical limit. EPL
**2008**, 84, 56003. [Google Scholar] [CrossRef] - Biro, T.S. Is There a Temperature? Conceptual Challenges at High Energy, Acceleration and Complexity; Springer Series on Fundamental Theories of Physics 1014; Springer Science+Business Media LLC: New York, NY, USA, 2011. [Google Scholar]
- Biro, T.S.; Jakovac, A. Power-law tails from multiplicative noise. Phys. Rev. Lett.
**2005**, 94, 132302. [Google Scholar] [CrossRef][Green Version] - Biro, T.S.; Purcsel, G. Non-extensive Boltzmann-equation and hadronization. Phys. Rev. Lett.
**2005**, 95, 062302. [Google Scholar] [CrossRef][Green Version] - Biro, T.S.; Purcsel, G.; Urmossy, K. Non-extensive approach to quark matter. EPJ A
**2009**, 40, 325–340. [Google Scholar] [CrossRef] - Biro, T.S.; Van, P.; Barnafoldi, G.G.; Urmossy, K. Statistical Power Law due to Reservoir Fluctuations and the Universal Thermostat Independence Principle. Entropy
**2014**, 16, 6497–6514. [Google Scholar] [CrossRef] - Beck, C.; Cohen, E.G.D. Superstatistics. Physica A
**2003**, 322, 267–275. [Google Scholar] [CrossRef][Green Version] - Cohen, E.D.G. Superstatistics. Physica D
**2004**, 193, 35. [Google Scholar] [CrossRef] - Beck, C. Recent developments in superstatistics. Braz. J. Phys.
**2009**, 38, 357. [Google Scholar] [CrossRef] - Beck, C. Superstatistics in high-energy physics, Application to cosmic ray energy spectra and e
^{+}e^{-}annihilation. EPJ A**2009**, 40, 267–273. [Google Scholar] [CrossRef] - Beck, C. Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett.
**2001**, 87, 180601. [Google Scholar] [CrossRef][Green Version] - Available online: https://en.wikipedia.org/wiki/Pareto_distribution#Generalized_Pareto_distributions (accessed on 26 October 2022).
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics; Statistical Physics; Elsevier Science: Amsterdam, The Netherlands, 2013; Volume 5, ISBN 9781483103372. [Google Scholar]
- Dirichlet, L.P.G. Sur une nouvelle méthode pour la détermination des intégrales multiples. J. Math. Pures Appl.
**1839**, 4, 164–168. [Google Scholar] - Smith, D.J.; Vamanamurthy, M.K. How Small Is a Unit Ball? Math. Mag.
**1989**, 62, 101–167. [Google Scholar] [CrossRef] - Wang, X. Volumes of Generalized Unit Balls. Math. Mag.
**2005**, 78, 390–395. [Google Scholar] [CrossRef] - Available online: htps://en.wikipedia.org/wiki/Volume_of_an_n-ball (accessed on 26 October 2022).
- Available online: https://math.stockexhange.com/questions/301506/hypervolume-of-a-n-dimensional-ball-in-p-norm (accessed on 26 October 2022).
- Wilk, G.; Wlodarczyk, Z. On the interpretation of nonextensive parameter q in Tsallis statistics and Levy distributions. Phys. Rev. Lett.
**2000**, 84, 2770. [Google Scholar] [CrossRef][Green Version] - Wilk, G. Fluctuations, correlations and non-extensivity. Braz. J. Phys.
**2007**, 37, 714. [Google Scholar] [CrossRef][Green Version] - Wilk, G.; Wlodarczyk, Z. Power laws in elementary and heavy-ion collisions. A story of fluctuations and nonextensivity? EPJ A
**2009**, 40, 299–312. [Google Scholar] [CrossRef][Green Version] - Biro, T.S.; Neda, Z. Unidirectional random growth with resetting. Physica A
**2018**, 499, 335–361. [Google Scholar] [CrossRef][Green Version] - Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Physica A
**2001**, 296, 405. [Google Scholar] [CrossRef][Green Version] - Kaniadakis, G. H-theorem and generalized entropies within the framework of nonlinear kinetics. Phys. Lett. A
**2001**, 288, 283. [Google Scholar] [CrossRef] - Kaniadakis, G. Relativistic entropy and related Boltzmann kinetics. EPJ A
**2009**, 40, 275–287. [Google Scholar] [CrossRef][Green Version] - Biró, T.S.; Barnaföldi, G.G.; Ván, P. New entropy formula with fluctuating reservoir. Phys. A
**2015**, 417, 215–220. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Biró, T.S.
Non-Additive Entropy Composition Rules Connected with Finite Heat-Bath Effects. *Entropy* **2022**, *24*, 1769.
https://doi.org/10.3390/e24121769

**AMA Style**

Biró TS.
Non-Additive Entropy Composition Rules Connected with Finite Heat-Bath Effects. *Entropy*. 2022; 24(12):1769.
https://doi.org/10.3390/e24121769

**Chicago/Turabian Style**

Biró, Tamás Sándor.
2022. "Non-Additive Entropy Composition Rules Connected with Finite Heat-Bath Effects" *Entropy* 24, no. 12: 1769.
https://doi.org/10.3390/e24121769