Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems
Abstract
:1. Introduction
2. R1234yf Ejector Design
2.1. The Ejector Refrigeration System
2.2. The R1234yf Ejector Design
- (1)
- The ejector is under steady conditions;
- (2)
- The ejector wall is adiabatic.
- (3)
- The velocity at the primary and secondary flow inlets and the ejector outlet is negligible compared with the supersonic velocity inside the ejector;
- (4)
- The fluid and friction loss that occurs in the ejector is considered by the isentropic coefficients;
2.2.1. Computational Model for Maximum Entrainment Ratio
2.2.2. Computational Model for the Geometrical Parameters of the Ejector
- (1)
- The free flow beam length of the motive fluid
- (2)
- The fluid diameter at the end of the free flow beam ()
2.3. The Control Variable Optimization Algorithms
3. Numerical Modeling and Validation
3.1. Governing Equations
3.2. Solver and Numerical Settings
3.3. Meshing Technique
3.4. Model Validation
4. Results and Discussions
4.1. The Influence of the Geometric Parameters on the Ejector Performance
4.1.1. The Influence of AR on Ejector Performance
4.1.2. The Influence of NXP on Ejector Performance
4.2. Fluid Field Characteristic inside the Ejector with the Optimal Geometry Parameters
4.2.1. Pressure Distribution inside the Ejector
4.2.2. Velocity Distribution inside the Ejector
5. Conclusions
- (1)
- Indicate the coupling laws between the area ratio and the ejector performance. When the area ratio increases, the entrainment ratio increases initially and then decreases; the recirculation area in the mixing chamber first decreases and then increases with the increase in the area ratio. There is no recirculation inside the ejector when the area ratio is 5.28, and the shock wave disappears exactly at the end of the mixing chamber. At this time, the entrained secondary fluid just passes through the mixing chamber without additional energy loss, and the maximum entrainment ratio is 0.602.
- (2)
- Reveal the relationships between NXP and ejector performance. The entrainment ratio first increases and then decreases with the increase in NXP, and the change in NXP directly affects the expansion state of the motive fluid. When ΔNXP is −2 mm, the expansion degree of the motive fluid is appropriate, and the final section area of the motive fluid beam is exactly equal to that of the mixing chamber inlet. There is no backflow phenomenon in the suction chamber, and the fluid streamline is clear, with the maximum entrainment ratio being 0.617.
- (3)
- Obtain the optimal entrainment ratio through the control variable optimization algorithms. The entrainment ratio increases by 17.34% compared with the initial value.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
critical velocity (m/s) | c | the mixing chamber outlet | |
diameter (mm) | np | the critical state | |
area (m2) | p | the primary fluid | |
length (mm) | s | the secondary fluid | |
mass flow rate (kg/s) | Abbreviations | ||
pressure (Pa) | AR | area ratio | |
pressure ratio | CFD | computational fluid dynamics | |
Greek letters | ERS | ejector refrigeration system | |
entrainment ratio | NXP | nozzle exit position | |
velocity coefficient | RANS | Reynolds-Averaged Navier–Stokes simulation | |
relative pressure | |||
density (kg m−3) |
References
- Aligolzadeh, F.; Hakkaki-Fard, A. A novel methodology for designing a multi-ejector refrigeration system. Appl. Therm. Eng. 2019, 151, 26–37. [Google Scholar] [CrossRef]
- Riaz, F.; Lee, P.S.; Chou, S.K. Thermal modelling and optimization of low-grade waste heat driven ejector refrigeration system incorporating a direct ejector model. Appl. Therm. Eng. 2020, 167, 114–170. [Google Scholar] [CrossRef]
- Li, H.; Cao, F.; Bu, X.; Wang, L.; Wang, X. Performance characteristics of R1234yf ejector-expansion refrigeration cycle. Appl. Energy 2014, 121, 96–103. [Google Scholar] [CrossRef]
- Pabon, J.J.G.; Khosravi, A.; Belman-Flores, J.M.; Machado, L.; Revellin, R. Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: A decade of researches. Int. J. Refrig. 2020, 118, 104–113. [Google Scholar] [CrossRef]
- Minor, B.; Spatz, M. HFO-1234yf low GWP refrigerant update. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 14–17 July 2008. [Google Scholar]
- Jarall, S. Study of refrigeration system with HFO-1234yf as a working fluid. Int. J. Refrig. 2012, 35, 1668–1677. [Google Scholar] [CrossRef]
- Del Col, D.; Torresin, D.; Cavallini, A. Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf. Int. J. Refrig. 2010, 33, 1307–1318. [Google Scholar] [CrossRef]
- Pridasawas, W. Solar-Driven Refrigeration Systems with Focus on the Ejector Cycle. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2006. [Google Scholar]
- Deng, J.; Wang, R.; Han, G. A review of thermally activated cooling technologies for combined cooling, heating and power systems. Prog. Energy Combust. Sci. 2011, 37, 172–203. [Google Scholar] [CrossRef]
- Lawrence, N.; Elbel, S. Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf. Int. J. Refrig. 2014, 38, 310–322. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Ma, Y.-Y.; Wang, H.-L.; Li, M.-X. Theoretical evaluation on effect of internal heat exchanger in ejector expansion transcritical CO2 refrigeration cycle. Appl. Therm. Eng. 2013, 50, 932–938. [Google Scholar] [CrossRef]
- Galindo, J.; Dolz, V.; García-Cuevas, L.M.; Ponce-Mora, A. Numerical evaluation of a solar-assisted jet-ejector refrigeration system: Screening of environmentally friendly refrigerants. Energy Convers. Manag. 2020, 210, 112681. [Google Scholar] [CrossRef]
- Peris Pérez, B.; Ávila Gutiérrez, M.; Expósito Carrillo, J.A.; Salmerón Lissén, J.M. Performance of Solar-driven Ejector Refrigeration System (SERS) as pre-cooling system for air handling units in warm climates. Energy 2022, 238, 112–168. [Google Scholar] [CrossRef]
- Suresh, R.; Datta, S.P. Drop-in Replacement of Conventional Automotive Refrigeration System to Hybrid-Ejector System with Environment-Friendly Refrigerants. Energy Convers. Manag. 2022, 266, 115–181. [Google Scholar] [CrossRef]
- Boumaraf, L.; Haberschill, P.; Lallemand, A. Investigation of a novel ejector expansion refrigeration system using the working fluid R134a and its potential substitute R1234yf. Int. J. Refrig. 2014, 45, 148–159. [Google Scholar] [CrossRef]
- Fang, Y.; Croquer, S.; Poncet, S.; Aidoun, Z.; Bartosiewicz, Y. Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. Int. J. Refrig. 2017, 77, 87–98. [Google Scholar] [CrossRef]
- Yan, G.; Bai, T.; Yu, J. Energy and exergy efficiency analysis of solar driven ejector–compressor heat pump cycle. Sol. Energy 2016, 125, 243–255. [Google Scholar] [CrossRef]
- Expósito Carrillo, J.A.; Sánchez de La Flor, F.J.; Salmerón Lissén, J.M. Thermodynamic comparison of ejector cooling cycles. Ejector characterisation by means of entrainment ratio and compression efficiency. Int. J. Refrig. 2017, 74, 371–384. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, Y. Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel. Appl. Energy 2017, 187, 675–688. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z.; Cheng, Y. Optimizing the set generating temperature to improve the designed performance of an ejector cooling system with thermal pumping effect (ECSTPE). Sol. Energy 2017, 157, 309–320. [Google Scholar] [CrossRef]
- Keenan, J.H.; Neumann, E.P.; Lustwerk, F. An investigation of ejector design by analysis and experiment. J. Appl. Mech. 1950, 17, 299–311. [Google Scholar] [CrossRef]
- Huang, B.; Chang, J.; Wang, C.; Petrenko, V.A. A 1-D analysis of ejector performance. Int. J. Refrig. 1999, 22, 354–364. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, W.; Wen, C.; Li, Y. Management, Shock circle model for ejector performance evaluation. Energy Convers. Manag. 2007, 48, 2533–2541. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, H.; Wang, L.; Yu, Z.; Mao, X. Management, Modeling and investigation of a steam-water injector. Energy Convers. Manag. 2017, 151, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, S.; Zhou, Z.; Li, Y.; Wang, L.; Liu, C. Numerical study of condensing flow based on the modified model. Appl. Therm. Eng. 2017, 127, 1206–1214. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Majkut, M.; Dykas, S.; Smołka, K.; Zhang, G.; Pritz, B. Selection of a steam condensation model for atmospheric air transonic flow prediction. Appl. Therm. Eng. 2022, 203, 117922. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Dykas, S.; Faghih Aliabadi, M.A. Reduction entropy generation and condensation by NaCl particle injection in wet steam supersonic nozzle. Int. J. Therm. Sci. 2022, 171, 107207. [Google Scholar] [CrossRef]
- Carrillo, J.A.E.; de La Flor, F.J.S.; Lissén, J.M. Single-phase ejector geometry optimisation by means of a multi-objective evolutionary algorithm and a surrogate CFD model. Energy 2018, 164, 46–64. [Google Scholar] [CrossRef]
- Wang, L.; Yan, J.; Wang, C.; Li, X. Numerical study on optimization of ejector primary nozzle geometries. Int. J. Refrig. 2017, 76, 219–229. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Jia, L.; Cai, W.; Gao, R. Optimization design of steam ejector primary nozzle for MED-TVC desalination system. Desalination 2019, 471, 114070. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Jia, L.; Wang, X. The influence of the area ratio on ejector efficiencies in the MED-TVC desalination system. Desalination 2017, 413, 168–175. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, H.; Wang, X.; Han, J.; Lai, Y. Investigation on the Performance of the Pump-Free Double Heat Source Ejector Refrigeration System with R1234yf. J. Therm. Sci. 2020, 31, 1452–1464. [Google Scholar] [CrossRef]
- Mohamed, S.; Shatilla, Y.; Zhang, T. CFD-based design and simulation of hydrocarbon ejector for cooling. Energy 2019, 167, 346–358. [Google Scholar] [CrossRef]
- Besagni, G.; Cristiani, N.; Croci, L.; Guédon, G.R.; Inzoli, F. Computational fluid-dynamics modelling of supersonic ejectors: Screening of modelling approaches, comprehensive validation and assessment of ejector component efficiencies. Appl. Therm. Eng. 2021, 186, 116431. [Google Scholar] [CrossRef]
- NIST Chemistry Web Book, NIST Standard Reference Database Number 69; NIST: Gaithersburg, MD, USA, 2005.
- Colarossi, M.; Trask, N.; Schmidt, D.P.; Bergander, M.J. Multidimensional modeling of condensing two-phase ejector flow. Int. J. Refrig. 2012, 35, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Liu, Q.; Wang, X.; Wang, L. Performance investigation on a coaxial-nozzle ejector for PEMFC hydrogen recirculation system. Int. J. Hydrogen Energy 2021, 46, 38026–38039. [Google Scholar] [CrossRef]
Parameters | Value (mm) |
---|---|
Diameter of the nozzle inlet | 17.4 |
Diameter of the nozzle throat | 7.4 |
Diameter of the nozzle outlet | 9.6 |
Diameter of the mixing chamber | 20 |
Diameter of the diffuser outlet | 39.6 |
Length of the nozzle convergence section | 40.8 |
Length of the nozzle divergence section | 9 |
Length of the mixing chamber | 140 |
Length of the diffuser | 160 |
Mesh Number | Pressure (Pa) | Error (%) | Velocity (m/s) | Error (%) |
---|---|---|---|---|
94,258 | 498,590.5 | 290.6628 | ||
141,489 | 503,297.0 | 0.944 | 290.1832 | −0.165 |
219,708 | 503,000.0 | −0.059 | 290.12048 | −0.02 |
Generator Temperature (°C) | Evaporator Temperature (°C) | Condenser Temperature (°C) | Entrainment Ratio | Errors (%) | |
---|---|---|---|---|---|
Experimental Results | Simulation Results | ||||
95 | 8 | 31.3 | 0.4377 | 0.3854 | 11.95 |
84 | 12 | 28.9 | 0.6350 | 0.7247 | 14.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Wang, C.; Wang, L.; Zhao, H. Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems. Entropy 2022, 24, 1632. https://doi.org/10.3390/e24111632
Yu M, Wang C, Wang L, Zhao H. Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems. Entropy. 2022; 24(11):1632. https://doi.org/10.3390/e24111632
Chicago/Turabian StyleYu, Meihong, Chen Wang, Lei Wang, and Hongxia Zhao. 2022. "Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems" Entropy 24, no. 11: 1632. https://doi.org/10.3390/e24111632
APA StyleYu, M., Wang, C., Wang, L., & Zhao, H. (2022). Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems. Entropy, 24(11), 1632. https://doi.org/10.3390/e24111632