Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4
Abstract
:1. Introduction
2. Fundamentals of MobilenetV1-YOLOv4
2.1. Backbone Feature Extraction Network
2.2. Feature Pyramid Network
2.3. Classification and Regression Layer
3. Improved MobilenetV1-YOLOv4 Algorithm
3.1. scSE Attention Mechanism
3.2. Depth Separable Convolutional Module
3.3. Mobilenet-V1 Network
4. Experimental Platform Construction and Training
4.1. Experimental Platform
4.2. Data Collection and Processing
4.3. Model Training
4.4. Loss Function
5. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, W.; Liang, H.; Liu, G.; Hu, Q.; Yu, X. Review of Deep Convolution Applied to Target Detection Algorithm. J. Front. Comput. Sci. Technol. 2022, 16, 1025–1042. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition IEEE Computer Society, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Cheng-Yang, F.; Alexander, C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Han, G.; He, M.; Gao, M.; Yu, J.; Liu, K.; Qin, L. Insulator Breakage Detection Based on Improved YOLOv5. Sustainability 2022, 14, 6066. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Qing, Y.; Wang, C.; Lan, T.; Yao, R. Detection of Insulator Defects with Improved ResNeSt and Region Proposal Network. IEEE Access 2020, 8, 184841–184850. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, G.; Li, E.; Liang, Z. Novel Feature Fusion Module-Based Detector for Small Insulator Defect Detection. IEEE Sens. J. 2021, 21, 16807–16814. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, J.; Zhao, Q.; Wang, Z. An Efficient YOLO Algorithm with an Attention Mechanism for Vision-Based Defect Inspection Deployed on FPGA. Micromachines 2022, 13, 1058. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Peng, H.; Zheng, L.; Gao, J.; Bao, Y. Railway Insulator Detection Based on Adaptive Cascaded Convolutional Neural Network. IEEE Access 2021, 9, 115676–115686. [Google Scholar] [CrossRef]
- Feng, Z.; Guo, L.; Huang, D.; Li, R. Electrical insulator defects detection method based on yolov5. In Proceedings of the 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 14–16 May 2021; IEEE: Manhattan, NY, USA, 2021; pp. 979–984. [Google Scholar]
- Sadykova, D.; Pernebayeva, D.; Bagheri, M.; James, A. IN-YOLO: Real-Time Detection of Outdoor High Voltage Insulators Using UAV Imaging. IEEE Trans. Power Deliv. 2019, 35, 1599–1601. [Google Scholar] [CrossRef]
- Liquan, Z.; Mengjun, Z.; Ying, C.; Yanfei, J. Fast Detection of Defective Insulator Based on Improved YOLOv5s. Comput. Intell. Neurosci. 2022, 2022, 8955292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Liu, J.; Zhang, C.; Xue, X.; Zhang, H.; Zhang, W. InsuDet: A Fault Detection Method for Insulators of Overhead Transmission Lines Using Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Y.; Liu, J.; Sun, Z. Improved YOLOv3 Network for Insulator Detection in Aerial Images with Diverse Background Interference. Electronics 2021, 10, 771. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Wu, Y.; Xu, H.; Sun, Z. An Improved Method Based on Deep Learning for Insulator Fault Detection in Diverse Aerial Images. Energies 2021, 14, 4365. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, M.; Cheng, X.; Zhao, Z. An Insulator in Transmission Lines Recognition and Fault Detection Model Based on Improved Faster RCNN. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Wu, Q.; An, J.; Lin, B. A Texture Segmentation Algorithm Based on PCA and Global Minimization Active Contour Model for Aerial Insulator Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1509–1518. [Google Scholar] [CrossRef]
- Liao, S.; An, J. A Robust Insulator Detection Algorithm Based on Local Features and Spatial Orders for Aerial Images. IEEE Geosci. Remote Sens. Lett. 2014, 12, 963–967. [Google Scholar] [CrossRef]
- She, L.; Fan, Y.; Wang, J.; Cai, L.; Xue, J.; Xu, M. Insulator Surface Breakage Recognition Based on Multiscale Residual Neural Network. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Han, G.; Zhang, M.; Wu, W.; He, M.; Liu, K.; Qin, L.; Liu, X. Improved U-Net based insulator image segmentation method based on attention mechanism. Energy Rep. 2021, 7, 210–217. [Google Scholar] [CrossRef]
- He, H.; Huang, X.; Song, Y.; Zhang, Z.; Wang, M.; Chen, B.; Yan, G. An insulator self-blast detection method based on YOLOv4 with aerial images. Energy Rep. 2022, 8, 448–454. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, S.; Li, Y.; Li, H.; Hao, H. Image Detection of Insulator Defects Based on Morphological Processing and Deep Learning. Energies 2022, 15, 2465. [Google Scholar] [CrossRef]
- Ding, J.; Cao, H.; Ding, X.; An, C. High Accuracy Real-Time Insulator String Defect Detection Method Based on Improved YOLOv5. Front. Energy Res. 2022, 10, 889. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhu, X.; Liao, C.; Shi, D.; Qu, W. Detection of Transmission Line Insulator Defects Based on an Improved Lightweight YOLOv4 Model. Appl. Sci. 2022, 12, 1207. [Google Scholar] [CrossRef]
- Han, G.; Li, T.; Li, Q.; Zhao, F.; Zhang, M.; Wang, R.; Yuan, Q.; Liu, K.; Qin, L. Improved Algorithm for Insulator and Its Defect Detection Based on YOLOX. Sensors 2022, 22, 6186. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; Quoc, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More Features from Cheap Operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589. [Google Scholar]
MobileNet-V1 Body | ||
---|---|---|
Type/Stide | Filter Shape | Output Size |
Input | 416 × 416 × 3 | |
Conv/s2 | 3 × 3 × 3 × 32 | 208 × 208 × 32 |
Conv dw/s1 | 3 × 3 × 32 dw | 208 × 208 × 32 |
Conv/s1 | 1 × 1 × 32 × 64 | 208 × 208 × 64 |
Conv dw/s2 | 3 × 3 × 64 dw | 104 × 104 × 64 |
Conv/s1 | 1 × 1 × 64 × 128 | 104 × 104 × 128 |
Conv dw/s1 | 3 × 3 × 128 dw | 104 × 104 × 128 |
Conv/s1 | 1 × 1 × 128 × 128 | 104 × 104 × 128 |
Conv dw/s2 | 3 × 3 × 128 dw | 52 × 52 × 128 |
Conv/s1 | 1 × 1 × 128 × 256 | 52 × 52 × 256 |
Conv dw/s1 | 3 × 3 × 256 dw | 52 × 52 × 256 |
Conv/s1 | 1 × 1 × 256 × 256 | 52 × 52 × 256 |
Conv dw/s2 | 3 × 3 × 256 dw | 26 × 26 × 256 |
Conv/s1 | 1 × 1 × 256 × 512 | 26 × 26 × 512 |
5 × Conv dw/s1, Conv/s1 | 3 × 3 × 256 dw, 1 × 1 × 512 × 512 | 26 × 26 × 512 |
Conv dw/s2 | 3 × 3 × 512 dw | 13 × 13 × 512 |
Conv/s1 | 1 × 1 × 512 × 1024 | 13 × 13 × 1024 |
Conv dw/s1 | 3 × 3 × 1024 dw | 13 × 13 × 1024 |
Conv/s1 | 1 × 1 × 1024 × 1024 | 13 × 13 × 1024 |
Algorithm | Recall Rate (R)/% | mAP/% | FPS Frame/s | Model Weight/MB |
---|---|---|---|---|
YOLOv4 | 77.59 | 94.41 | 74 | 244 |
MobilenetV1-YOLOv4 | 92.29 | 98.55 | 153 | 155 |
Improved MobilenetV1-YOLOv4 | 93.25 | 98.81 | 190 | 57.9 |
Algorithm | Recall Rate (R)/% | mAP/% | FPS Frame/s | Model Weight/MB |
---|---|---|---|---|
MobilenetV1-YOLOv4 | 92.29 | 98.55 | 153 | 155 |
MobilenetV2-YOLOv4 | 92.53 | 98.95 | 139 | 148 |
MobilenetV3-YOLOv4 | 90.12 | 97.74 | 129 | 152 |
Ghostnet-YOLOv4 | 88.92 | 98.02 | 118 | 150 |
Improved MobilenetV1-YOLOv4 | 93.25 | 98.81 | 190 | 57.9 |
Algorithm | Recall Rate (R)/% | mAP/% | FPS Frame/s | Model Weight/MB |
---|---|---|---|---|
Improved Ghostnet-YOLOv4 | 91.33 | 97.98 | 135 | 43.8 |
Improved MobilenetV2-YOLOv4 | 92.77 | 98.13 | 168 | 45.5 |
Improved MobilenetV3-YOLOv4 | 90.84 | 97.98 | 164 | 48.9 |
Improved MobilenetV1-YOLOv4 | 93.25 | 98.81 | 190 | 57.9 |
Algorithm | scSE | Recall Rate (R)/% | mAP/% | FPS Frame/s | Model Weight/MB |
---|---|---|---|---|---|
Improved Mobi-lenetV1-YOLOv4 | 2 | 90.84 | 98.07 | 206 | 52 |
Improved Mobi-lenetV1-YOLOv4 | 3 | 90.84 | 98.18 | 196 | 57.6 |
Improved Mobi-lenetV1-YOLOv4 | 5 | 93.25 | 98.81 | 190 | 57.9 |
YOLOv5 | 98.55 | 99.67 | 109 | 81.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Deng, J.; Huang, Y.; Ling, L.; Han, T. Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4. Entropy 2022, 24, 1588. https://doi.org/10.3390/e24111588
Xu S, Deng J, Huang Y, Ling L, Han T. Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4. Entropy. 2022; 24(11):1588. https://doi.org/10.3390/e24111588
Chicago/Turabian StyleXu, Shanyong, Jicheng Deng, Yourui Huang, Liuyi Ling, and Tao Han. 2022. "Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4" Entropy 24, no. 11: 1588. https://doi.org/10.3390/e24111588
APA StyleXu, S., Deng, J., Huang, Y., Ling, L., & Han, T. (2022). Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4. Entropy, 24(11), 1588. https://doi.org/10.3390/e24111588