Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph
Abstract
:1. Introduction
- (1)
- Extracting entities based on the equipment mechanism and knowledge rules of bearing data, then applying the MOCNN to categorize faults through data labeling to complete extraction of data relationship, and eventually, the knowledge graph of bearing faults is established. Furthermore, by forming the graph to assist decision-making as well as to display detailed fault information, it realizes a complete fault diagnosis, which moves away from a single reliance on mechanism knowledge or a data-driven diagnosis technique and toward the union of data and knowledge.
- (2)
- This paper offers an end-to-end one-dimensional multiscale convolutional neural network model (MOCNN) that combines advantages of one-dimensional convolutional networks in processing one-dimensional input. The model first implements sensitive feature extraction of the input 1D signals from different angles using the modified Inception module, and then adds a residual link to the Inception block to learn more abundant features. Following that, the retrieved features are fine-tuned using the channel attention and spatial attention modules. To improve the performance of the model and the effectiveness of defect diagnosis, the L2 regularization is introduced to the attention module and the classification layer.
- (3)
- The model is combined with the knowledge graph, marked by the CWRU data set, and adopted a new experimental division method. Compared with Resnet and Inception, this model has a good diagnosis impact. It is more suitable for large data and multi-classification problems and also features fast and stable convergence on small data sets and multi-classification problems. Moreover, it performs well in noise environment tests in various noise environments, working situations, and variable working conditions.
2. Related Work
2.1. Knowledge Graph
2.2. CNN
2.3. Multiscale Convolution
2.4. Residual Learning
2.5. Attentional Mechanisms
2.6. Evaluation Metrics
3. Proposed Method
3.1. The Proposed Fault Diagnosis Model
3.2. The Proposed Fault Diagnosis Method
3.3. Data Preparation
4. Experimental Study and Analysis
4.1. Construction of Knowledge Graphs
4.1.1. Entity Extraction
4.1.2. Relation Extraction
4.1.3. Graph Construction
4.2. Model Performance Discussion
4.2.1. Performance of MOCNN on Small Datasets
4.2.2. Anti-Noise Performance of MOCNN
4.2.3. Comparison with Other Algorithms
4.2.4. Performance of the Model under Variable Load Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, X.C.; Chen, B.Q.; Yao, B.; He, W.P. Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification. Comput. Ind. 2019, 106, 71–84. [Google Scholar] [CrossRef]
- Qian, Y.; Yan, R.; Gao, R.X. A multi-time scale approach to remaining useful life prediction in rolling bearing. Mech. Syst. Signal Process. 2017, 83, 549–567. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q.; Li, X. Diagnosing Rotating Machines With Weakly Supervised Data Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2020, 16, 1688–1697. [Google Scholar] [CrossRef]
- Singhal, A. Official Google Blog: Introducing the Knowledge Graph: Things, not strings [EB/OL]. Google Inc (2012-05-02)[2020-02-28]. Available online: https://blog.google/products/search/introducing-knowledge-graph-things-not/ (accessed on 27 October 2022).
- Oramas, S.; Ostuni, V.C.; Noia, T.D.; Serra, X.; Di Sciascio, E. Sound and Music Recommendation with Knowledge Graphs. ACM Trans. Intell. Syst. Technol. 2016, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Dai, W.; He, S.; Chen, X.; Yang, G. A Knowledge Graph Framework for Software-Defined Industrial Cyber-Physical Systems. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019. [Google Scholar]
- Yang, H.; Liu, Y.; Meré, J.O.; Yang, H. Anticipating Stock Market of the Renowned Companies: A Knowledge Graph Approach. Complexity 2019, 2019, 9202457. [Google Scholar]
- Liu, Y.; Chen, W.; Qu, H.; Mahmud, S.M.H.; Miao, K. Weakly Supervised Image Classification and Pointwise Localization with Graph Convolutional Networks. Pattern Recognit. 2020, 109, 107596. [Google Scholar] [CrossRef]
- Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. arxiv 2017, arXiv:1708.02709. [Google Scholar]
- Baldi, P. Deep learning in biomedical data science. Annu. Rev. Biomed. Data Sci. 2018, 1, 181–205. [Google Scholar] [CrossRef]
- Liang, P.; Deng, C.; Wu, J.; Yang, Z.; Zhu, J.; Zhang, Z. Compound Fault Diagnosis of Gearboxes via Multi-label Convolutional Neural Network and Wavelet Transform. Comput. Ind. 2019, 113, 103132. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Zhu, J.; Nan, C.; Peng, W. Estimation of Bearing Remaining Useful Life based on Multiscale Convolutional Neural Network. IEEE Trans. Ind. Electron. 2018, 66, 1. [Google Scholar] [CrossRef]
- Mao, S.; Zhao, Y.; Chen, J.; Wang, B.; Tang, Y. Development of process safety knowledge graph: A Case study on delayed coking process. Comput. Chem. Eng. 2020, 143, 107094. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, J.; Wang, Y. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition. Neurocomputing 2018, 310, 213–222. [Google Scholar] [CrossRef]
- Zou, F.; Zhang, H.; Sang, S.; Li, X.; He, W.; Liu, X.; Chen, Y. An anti-noise one-dimension convolutional neural network learning model applying on bearing fault diagnosis. Measurement 2021, 186, 110236. [Google Scholar] [CrossRef]
- Zhao, M.; Kang, M.; Tang, B.; Pecht, M. Deep Residual Networks With Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes. IEEE Trans. Ind. Electron. 2018, 65, 4290–4300. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhao, M.; Tang, B.; Deng, L.; Pechtb, M. Multiple Wavelet Regularized Deep Residual Networks for Fault Diagnosis. Measurement 2019, 152, 107331. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Lei, Y.; Dogan, U.; Zhou, D.X.; Kloft, M. Data-dependent Generalization Bounds for Multi-class Classification. arxiv 2017, arXiv:1706.09814. [Google Scholar] [CrossRef] [Green Version]
- Patil, T.R.; Sherekar, S.S. Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification. Comput. Sci. 2013, 6, 256–261. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arxiv 2015, arXiv:1502.03167. [Google Scholar]
- Yang, D.; Karimi, H.R.; Sun, K. Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples. Neural Netw. 2021, 141, 133–144. [Google Scholar] [CrossRef] [PubMed]
Node ID | Node Type | Node Label | Node Description |
---|---|---|---|
0 | Level_0 | Equipment | Experimental Equipment |
1 | Level_1 | DE12 | 12DriveEndFault |
8 | Level_2 | DE12_size7 | 12DriveEndFault_FaultDiameter0.007 |
27 | Level_3 | DE12_size7_load0 | 12DriveEndFault_FaultDiameter0.007_Load0HP |
93 | Level_4 | DE12_size7_load0_OR | 12DriveEndFault_FaultDiameter0.007_Load0HP_OuterRace |
222 | Level_5 | DE12_size7_load0_OR_clock6 | 12DriveEndFault_FaultDiameter0.007_Load0HP_OuterRace_@6:00 |
Accuracy (%) | Macro-Precision (%) | Macro-Recall (%) | Fault Type | ||
---|---|---|---|---|---|
Level_1(Type) | 100 | 100 | 100 | 100 | 4 |
Level_2(Size) | 99.92 | 99.93 | 99.23 | 99.23 | 10 |
Level_3(Load) | 97.63 | 97.78 | 97.64 | 97.65 | 44 |
Level_4(Location) | 93.35 | 93.35 | 93.35 | 93.35 | 119 |
Level_5(Clock) | 97.86 | 97.86 | 97.86 | 97.86 | 160 |
Type | DE12 | DE48 | FE12 | NO |
---|---|---|---|---|
Number | 30,000 | 25,500 | 22,500 | 2000 |
Type | DE12_Size7 | DE12_Size14 | DE12_Size21 | DE12_Size28 | DE48_Size7 | DE48_Size14 | DE48_Size21 | FE12_Size7 | FE12_Size14 | FE12_Size21 |
---|---|---|---|---|---|---|---|---|---|---|
Number | 10,000 | 6000 | 10,000 | 4000 | 10,000 | 5500 | 10,000 | 10,000 | 6500 | 6000 |
Metric | Accuracy (%) | Macro-Precision (%) | Macro-Recall (%) | ||
---|---|---|---|---|---|
Method | |||||
XGBoost | 19.31 | 18.63 | 17.37 | 19.28 | |
RF | 54.20 | 54.66 | 53.23 | 54.38 | |
DRNN | 70.26 | 71.47 | 68.41 | 70.27 | |
GRU | 83.58 | 83.77 | 83.65 | 82.74 | |
Inception10 | 86.23 | 86.92 | 86.27 | 85.67 | |
MOCNN | 97.86 | 97.86 | 97.86 | 97.86 |
Start Entity | Tail Entity | Relation |
---|---|---|
DE12 | Equipment | belongs to |
DE12_size7 | DE12 | belongs to |
DE12_size7_load0 | DE12_size7 | belongs to |
DE12_size7_load0_OR | DE12_size7_load0 | belongs to |
DE12_size7_load0_OR_clock6 | DE12_size7_load0_OR | belongs to |
Fault Type | Class Label | Dataset A Training/Test | Dataset B Training/Test | Dataset C Training/Test | Dataset D Training/Test | Dataset E Training/Test |
---|---|---|---|---|---|---|
DE12_size7_load0_BA | B0.007 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
DE12_size14_load0_BA | B0.014 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
DE12_size21_load0_BA | B0.021 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
DE12_size7_load0_IR | IR0.007 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
DE12_size14_load0_IR | IR0.014 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
DE12_size21_load0_IR | IR0.021 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
DE12_size7_load0_OR | OR0.007 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
DE12_size14_load0_OR | OR0.009 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
DE12_size21_load0_OR | OR0.021 | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
NO_load0 | NO | 3500/1500 | 3500/1500 | 3500/1500 | 3500/1500 | 14,000/6000 |
Accuracy (%) | Macro-Precision (%) | Macro-Recall (%) | ||
---|---|---|---|---|
3 HP | 100 | 100 | 100 | 100 |
2 HP | 100 | 100 | 100 | 100 |
1 HP | 100 | 100 | 100 | 100 |
0 HP | 100 | 100 | 100 | 100 |
Mix Load | 99.98 | 99.98 | 99.98 | 99.98 |
Load | SNR | 2 dB | 0 dB | −2 dB | −4 dB | −6 dB | −8 dB | −10 dB | |
---|---|---|---|---|---|---|---|---|---|
Metric | |||||||||
0 HP | Accuracy (%) | 100 | 100 | 100 | 99.66 | 99.46 | 98.47 | 98.2 | |
Macro-precision (%) | 100 | 100 | 100 | 99.67 | 99.48 | 98.49 | 98.2 | ||
Macro-recall (%) | 100 | 100 | 100 | 99.66 | 99.46 | 98.49 | 98.2 | ||
Macro- score (%) | 100 | 100 | 100 | 99.67 | 99.47 | 98.48 | 98.2 | ||
1 HP | Accuracy (%) | 100 | 100 | 100 | 99.73 | 99.73 | 99.61 | 98.66 | |
Macro-precision (%) | 100 | 100 | 100 | 99.73 | 99.74 | 99.61 | 98.68 | ||
Macro-recall (%) | 100 | 100 | 100 | 99.73 | 99.73 | 99.60 | 98.68 | ||
Macro- score (%) | 100 | 100 | 100 | 99.73 | 99.73 | 99.60 | 98.68 | ||
2 HP | Accuracy (%) | 100 | 100 | 100 | 100 | 100 | 99.87 | 99.8 | |
Macro-precision (%) | 100 | 100 | 100 | 100 | 100 | 99.87 | 99.8 | ||
Macro-recall (%) | 100 | 100 | 100 | 100 | 100 | 99.87 | 99.8 | ||
Macro- score (%) | 100 | 100 | 100 | 100 | 100 | 99.87 | 99.8 | ||
3 HP | Accuracy (%) | 100 | 100 | 100 | 100 | 100 | 100 | 99.46 | |
Macro-precision (%) | 100 | 100 | 100 | 100 | 100 | 100 | 99.46 | ||
Macro-recall (%) | 100 | 100 | 100 | 100 | 100 | 100 | 99.46 | ||
Macro- score (%) | 100 | 100 | 100 | 100 | 100 | 100 | 99.46 |
SNR | Metric | MOCNN | Resnet-18 | Inception10 | VGG16 | Lenet5 | GRU | LSTM |
---|---|---|---|---|---|---|---|---|
10 dB | Accuracy (%) | 100 | 99.89 | 98.66 | 99.26 | 10.05 | 98.33 | 20.33 |
Macro-precision (%) | 100 | 99.89 | 98.66 | 99.30 | 0.98 | 98.31 | 15.13 | |
Macro-recall (%) | 100 | 99.89 | 98.60 | 99.26 | 10.05 | 98.30 | 20.06 | |
Macro- score (%) | 100 | 99.89 | 98.62 | 99.27 | 1.79 | 98.28 | 8.06 | |
5 dB | Accuracy (%) | 100 | 99.89 | 94.67 | 99.26 | 9.8 | 99.93 | 28.66 |
Macro-precision (%) | 100 | 99.89 | 95.32 | 99.26 | 0.98 | 99.93 | 27.25 | |
Macro-recall (%) | 100 | 99.89 | 94.53 | 99.26 | 10.01 | 99.93 | 28.48 | |
Macro- score (%) | 100 | 99.89 | 94.38 | 99.26 | 1.78 | 99.93 | 0.1983 | |
−5 dB | Accuracy (%) | 99.93 | 99.93 | 95.2 | 98.93 | 10.13 | 99.93 | 21.8 |
Macro-precision (%) | 99.93 | 99.93 | 95.59 | 98.95 | 10.13 | 99.93 | 13.83 | |
Macro−recall (%) | 99.93 | 99.92 | 95.15 | 98.93 | 10.03 | 99.93 | 21.72 | |
Macro- score (%) | 99.93 | 99.92 | 94.83 | 98.92 | 1.84 | 99.93 | 13.57 | |
−10 dB | Accuracy (%) | 99.46 | 96.43 | 97.73 | 98.01 | 10.03 | 94.13 | 40.53 |
Macro-precision (%) | 99.46 | 96.42 | 97.79 | 98.02 | 1.02 | 95.29 | 37.49 | |
Macro-recall (%) | 99.46 | 95.88 | 97.69 | 98.01 | 10.03 | 93.99 | 39.98 | |
Macro- score (%) | 99.46 | 95.83 | 97.72 | 97.98 | 1.81 | 94.18 | 30.71 |
MOCNN | Resnet-18 | Inception10 | VGG16 | |
---|---|---|---|---|
Number of Parameter | ||||
Test Time/s | 0.613 | 2.598 | 0.504 | 0.533 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, Y.; Sun, Q.; Qi, B. Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph. Entropy 2022, 24, 1589. https://doi.org/10.3390/e24111589
Li Z, Li Y, Sun Q, Qi B. Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph. Entropy. 2022; 24(11):1589. https://doi.org/10.3390/e24111589
Chicago/Turabian StyleLi, Zhibo, Yuanyuan Li, Qichun Sun, and Bowei Qi. 2022. "Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph" Entropy 24, no. 11: 1589. https://doi.org/10.3390/e24111589
APA StyleLi, Z., Li, Y., Sun, Q., & Qi, B. (2022). Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph. Entropy, 24(11), 1589. https://doi.org/10.3390/e24111589