Structure and Dynamics of dsDNA in Cell-like Environments
Abstract
1. Introduction
1.1. DNA Double-Helix Opening In Vivo
- Genetic information is coded twice in the two complementary strands. This allows storage of the “information” and the ability to check for errors during replication [9].
- The sugar–phosphate backbone promotes base-paring between complementary strands, which is essential for genetic information storage and retrieval [11].
- The lineal or stacked arrangement of the bases along the longitudinal axis of the DNA allows proteins to directly access the fragment of the sequence.
- Opening (unwinding) and closing of the two DNA strands is reversible. That is how replication and transcription can be carried out without damaging the original molecule.
1.2. DNA Double-Helix Opening In Vitro
1.2.1. Thermal Melting of DNA
1.2.2. Force-Induced Melting of DNA
2. Role of Salt Concentration
3. DNA in a Crowded Solution
4. DNA in Confined Geometry
5. Translocation of DNA (DNA Passing through Pores)
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vologodskii, A. Biophysics of DNA, 1st ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Watson, J.D.; Crick, F.H. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Sinden, R.R. DNA Structure and Function, 1st ed.; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Bloomfield, V.A.; Crothers, D.M.; Tinoco, I.; Hearst, J.E.; Wemmer, D.E.; Killman, P.A.; Turner, D.H. Nucleic Acids: Structures, Properties, and Functions, 1st ed.; University Science Books: Sausalito, CA, USA, 2000. [Google Scholar]
- Omoto, C. Genes and DNA: A Beginner’s Guide to Genetics and Its Applications; Columbia University Press: New York, NY, USA, 2004. [Google Scholar]
- Anders, M. DNA, Genes, and Chromosomes; Genetics Series; Capstone: Mankato, MN, USA, 2018. [Google Scholar]
- Calladine, C.R.; Drew, H.; Luisi, B.; Travers, A. Understanding DNA, Third Edition: The Molecule and How it Works; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Carlberg, C.; Molnar, F. Mechanisms of Gene Regulation, 1st ed.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Watson, J.; Myers, R.; Myers, U.; Caudy, A.; Witkowski, J. Recombinant DNA: Genes and Genomes: A Short Course; W. H. Freeman: Cold Spring Harbor, NY, USA, 2007. [Google Scholar]
- Gaeta, G. Results and Limitations of the Soliton Theory of DNA Transcription. J. Biol. Phys. 1999, 24, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Poltev, V.; Anisimov, V.M.; Danilov, V.I.; Garcia, D.; Sanchez, C.; Deriabina, A.; Gonzalez, E.; Rivas, F.; Polteva, N. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures. Biopolymers 2014, 101, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Komiya, K.; Yamamura, M.; Rose, J.A. Quantitative design and experimental validation for a single-molecule DNA nanodevice transformable among three structural states. Nucleic Acids Res. 2010, 38, 4539–4546. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lee, S.H.; Mao, C. A DNA Nanomachine Based on a Duplex–Triplex Transition. Angew. Chem. Int. Ed. 2004, 43, 5335–5338. [Google Scholar] [CrossRef] [PubMed]
- Takinoue, M.; Suyama, A. Hairpin-DNA memory Using Molecular Addressing. Small 2006, 2, 1244–1247. [Google Scholar] [CrossRef]
- Takinoue, M.; Suyama, A. Molecular reactions for a molecular memory based on hairpin DNA. Chem-Bio Inf. J. 2004, 4, 93–100. [Google Scholar] [CrossRef][Green Version]
- Liu, D.; Balasubramanian, S. A Proton-Fuelled DNA Nanomachine. Angew. Chem. Int. Ed. 2003, 42, 5734–5736. [Google Scholar] [CrossRef]
- Cantor, C.R.; Schimmel, P.R. Biophysical Chemistry: Part III: The Behavior of Biological Macromolecules (Their Biophysical Chemistry), 1st ed.; W. H. Freeman: New York, NY, USA, 1980. [Google Scholar]
- Wartell, R.M.; Benight, A.S. Thermal denaturation of {DNA} molecules: A comparison of theory with experiment. Phys. Rep. 1985, 126, 67–107. [Google Scholar] [CrossRef]
- Nelson, P. Biological Physics: Energy, Information, Life, 1st ed.; W. H. Freeman: New York, NY, USA, 2003. [Google Scholar]
- Zimm, B.H. Theory of Melting of the Helical Form in Double Chains of the DNA. J. Chem. Phys. 1960, 33, 1349–1356. [Google Scholar] [CrossRef]
- Poland, D.; Scheraga, H.A. Theory of Helix-Coil Transitions in Biopolymers; Statistical Mechanical Theory of Order-Disorder Transitions in Biological Macromolecules; Academic Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Kumar, S.; Li, M.S. Biomolecules under mechanical force. Phys. Rep. 2010, 486, 1–74. [Google Scholar] [CrossRef]
- Frank-Kamenetskii, M.D.; Prakash, S. Fluctuations in the {DNA} double helix: A critical review. Phys. Life Rev. 2014, 11, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Essevaz-Roulet, B.; Bockelmann, U.; Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. USA 1997, 94, 11935–11940. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, K.L. Pulling a polymer out of a potential well and the mechanical unzipping of DNA. Phys. Rev. E 2000, 62, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Lubensky, D.K.; Nelson, D.R. Pulling Pinned Polymers and Unzipping DNA. Phys. Rev. Lett. 2000, 85, 1572–1575. [Google Scholar] [CrossRef]
- Bhattacharjee, S.M. Unzipping DNAs: Towards the first step of replication. J. Phys. A Math. Gen. 2000, 33, L423. [Google Scholar] [CrossRef]
- Kapri, R.; Bhattacharjee, S.M.; Seno, F. Complete Phase Diagram of DNA Unzipping: Eye, Y Fork, and Triple Point. Phys. Rev. Lett. 2004, 93, 248102. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, N. The probability analysis of opening of DNA. J. Chem. Phys. 2011, 134, 115102. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Nelson, D.R. Shear Unzipping of DNA. J. Phys. Chem. B 2009, 113, 3831–3836. [Google Scholar] [CrossRef]
- Santosh, M.; Maiti, P.K. Force induced DNA melting. J. Phys. Condens. Matter 2009, 21, 034113. [Google Scholar] [CrossRef]
- Prakash, S.; Singh, Y. Shear unzipping of double-stranded DNA. Phys. Rev. E 2011, 84, 031905. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Modi, T.; Giri, D.; Kumar, S. On the rupture of DNA molecule. J. Chem. Phys. 2015, 142, 174910. [Google Scholar] [CrossRef] [PubMed]
- Tee, S.R.; Wang, Z. How Well Can DNA Rupture DNA? Shearing and Unzipping Forces inside DNA Nanostructures. ACS Omega 2018, 3, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, N. Pulling DNA: The Effect of Chain Length on the Mechanical Stability of DNA Chain. Macromol. Symp. 2015, 357, 64–69. [Google Scholar] [CrossRef]
- Singh, A.; Mittal, B.; Singh, N. Force induced unzipping of dsDNA: The solvent effect. Phys. Express 2013, 3, 18. [Google Scholar]
- Singh, N.; Singh, Y. Statistical theory of force-induced unzipping of DNA. Eur. Phys. J. E 2005, 17, 7–19. [Google Scholar] [CrossRef]
- Simmons, R.; Finer, J.; Chu, S.; Spudich, J. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 1996, 70, 1813–1822. [Google Scholar] [CrossRef]
- Rico-Pasto, M.; Ritort, F. Temperature-dependent elastic properties of DNA. Biophys. Rep. 2022, 2, 100067. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef]
- Weeks, J.; Lucks, J.; Kafri, Y.; Danilowicz, C.; Nelson, D.; Prentiss, M. Pause Point Spectra in {DNA} Constant-Force Unzipping. Biophys. J. 2005, 88, 2752–2765. [Google Scholar] [CrossRef]
- Nishio, M.; Tsukakoshi, K.; Ikebukuro, K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens. Bioelectron. 2021, 178, 113030. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Hou, X.M. Opposite Effects of Potassium Ions on the Thermal Stability of i-Motif DNA in Different Buffer Systems. ACS Omega 2021, 6, 8976–8985. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.L.; Kendrick, S. The i-Motif as a Molecular Target: More Than a Complementary DNA Secondary Structure. Pharmaceuticals 2021, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Chi, R.; Wu, Y.L.; Ho, J.a.A. Applications of triplex DNA nanostructures in sensor development. Anal. Bioanal. Chem. 2022, 414, 5217–5237. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.M.; Foster, D.P. Efimov-DNA phase diagram: Three stranded DNA on a cubic lattice. J. Chem. Phys. 2021, 155, 064903. [Google Scholar] [CrossRef]
- Maji, J.; Bhattacharjee, S.M.; Seno, F.; Trovato, A. Melting behavior and different bound states in three-stranded DNA models. Phys. Rev. E 2014, 89, 012121. [Google Scholar] [CrossRef]
- Wittwer, C.T. High-resolution DNA melting analysis: Advancements and limitations. Hum. Mutat. 2009, 30, 857–859. [Google Scholar] [CrossRef]
- Schildkraut, C.; Lifson, S. Dependence of the melting temperature of DNA on salt concentration. Biopolymers 1965, 3, 195–208. [Google Scholar] [CrossRef]
- Frank-Kamenetskii, M.D. Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers 1971, 10, 2623–2624. [Google Scholar] [CrossRef]
- Weber, G. Sharp DNA denaturation due to solvent interaction. EPL Europhys. Lett. 2006, 73, 806. [Google Scholar] [CrossRef]
- Manning, G.S. Counterion Condensation on a Helical Charge Lattice. Macromolecules 2001, 34, 4650–4655. [Google Scholar] [CrossRef]
- SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 1998, 95, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Basílio Barbosa, V.; de Oliveira Martins, E.; Weber, G. Nearest-neighbour parameters optimized for melting temperature prediction of DNA/RNA hybrids at high and low salt concentrations. Biophys. Chem. 2019, 251, 106189. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.M.; Long, A.S.; Brown, T.; Fox, K.R.; Weber, G. Melting temperature measurement and mesoscopic evaluation of single, double and triple DNA mismatches. Chem. Sci. 2020, 11, 8273–8287. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, N. Phase diagram of mechanically stretched DNA: The salt effect. Physics A 2013, 392, 2052–2059. [Google Scholar] [CrossRef]
- Dauxois, T.; Peyrard, M.; Bishop, A.R. Entropy-driven DNA denaturation. Phys. Rev. E 1993, 47, R44–R47. [Google Scholar] [CrossRef]
- Peyrard, M.; Bishop, A.R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 1989, 62, 2755–2758. [Google Scholar] [CrossRef]
- Rodrigues Leal, M.; Weber, G. Sharp DNA denaturation in a helicoidal mesoscopic model. Chem. Phys. Lett. 2020, 755, 137781. [Google Scholar] [CrossRef]
- Zoli, M. Base pair fluctuations in helical models for nucleic acids. J. Chem. Phys. 2021, 154, 194102. [Google Scholar] [CrossRef]
- Valle-Orero, J.; Wildes, A.R.; Theodorakopoulos, N.; Cuesta-López, S.; Garden, J.L.; Danilkin, S.; Peyrard, M. Thermal denaturation of A-DNA. New J. Phys. 2014, 16, 113017. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N. Pulling short DNA molecules having defects on different locations. Phys. Rev. E 2015, 92, 032703. [Google Scholar] [CrossRef] [PubMed]
- Zoli, M. Thermodynamics of twisted DNA with solvent interaction. J. Chem. Phys. 2011, 135, 115101. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, N. Effect of salt concentration on the stability of heterogeneous {DNA}. Physics A 2015, 419, 328–334. [Google Scholar] [CrossRef]
- Ferreira, I.; Amarante, T.D.; Weber, G. DNA terminal base pairs have weaker hydrogen bonds especially for AT under low salt concentration. J. Chem. Phys. 2015, 143, 11B602_1. [Google Scholar] [CrossRef] [PubMed]
- Macedo, D.; Guedes, I.; Albuquerque, E. Thermal properties of a DNA denaturation with solvent interaction. Physics A 2014, 404, 234–241. [Google Scholar] [CrossRef]
- Chen, Y.; Prohofsky, E. Salt dependent premelting base pair opening probabilities of B and Z {DNA} Poly [d(G-C)] and significance for the B-Z transition. Biophys. J. 1993, 64, 1394–1397. [Google Scholar] [CrossRef]
- Gao, Y.; Prohofsky, E.W. A modified self-consistent phonon theory of hydrogen bond melting. J. Chem. Phys. 1984, 80, 2242–2243. [Google Scholar] [CrossRef]
- Gao, Y.; Devi-Prasad, K.V.; Prohofsky, E.W. A self-consistent microscopic theory of hydrogen bond melting with application to poly(dG).poly(dC). J. Chem. Phys. 1984, 80, 6291–6298. [Google Scholar] [CrossRef]
- Jash, B.; Müller, J. Metal-Mediated Base Pairs: From Characterization to Application. Chem.—A Eur. J. 2017, 23, 17166–17178. [Google Scholar] [CrossRef]
- Tan, Z.J.; Chen, S.J. Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. J. Chem. Phys. 2005, 122, 044903. [Google Scholar] [CrossRef]
- Tan, Z.J.; Chen, S.J. Nucleic Acid Helix Stability: Effects of Salt Concentration, Cation Valence and Size, and Chain Length. Biophys. J. 2006, 90, 1175–1190. [Google Scholar] [CrossRef]
- Silva, L.G.; Weber, G. Mesoscopic model confirms strong base pair metal mediated bonding for T–Hg2+–T and weaker for C–Ag+–C. Chem. Phys. Lett. 2022, 803, 139847. [Google Scholar] [CrossRef]
- Xue, J.; Wang, P.; Li, X.; Tan, R.; Zong, W. Transformation characteristics of A-DNA in salt solution revealed through molecular dynamics simulations. Biophys. Chem. 2022, 288, 106845. [Google Scholar] [CrossRef]
- Privalov, P.L.; Crane-Robinson, C. Forces maintaining the DNA double helix and its complexes with transcription factors. Prog. Biophys. Mol. Biol. 2018, 135, 30–48. [Google Scholar] [CrossRef]
- Xue, J.; Li, X.; Tan, R.; Zong, W. Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution. Chin. Phys. B 2022, 31, 048702. [Google Scholar] [CrossRef]
- Lavery, R.; Maddocks, J.H.; Pasi, M.; Zakrzewska, K. Analyzing ion distributions around DNA. Nucleic Acids Res. 2014, 42, 8138–8149. [Google Scholar] [CrossRef]
- Pasi, M.; Maddocks, J.H.; Lavery, R. Analyzing ion distributions around DNA: Sequence-dependence of potassium ion distributions from microsecond molecular dynamics. Nucleic Acids Res. 2015, 43, 2412–2423. [Google Scholar] [CrossRef]
- Owen, R.J.; Hill, L.R.; Lapage, S.P. Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 1969, 7, 503–516. [Google Scholar] [CrossRef]
- Owczarzy, R.; You, Y.; Moreira, B.G.; Manthey, J.A.; Huang, L.; Behlke, M.A.; Walder, J.A. Effects of Sodium Ions on DNA Duplex Oligomers: Improved Predictions of Melting Temperatures. Biochemistry 2004, 43, 3537–3554. [Google Scholar] [CrossRef]
- Owczarzy, R.; Moreira, B.G.; You, Y.; Behlke, M.A.; Walder, J.A. Predicting Stability of DNA Duplexes in Solutions Containing Magnesium and Monovalent Cations. Biochemistry 2008, 47, 5336–5353. [Google Scholar] [CrossRef]
- Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M.D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006, 34, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Vuletić, T.; Babić, S.D.; Grgičin, D.; Aumiler, D.; Rädler, J.; Livolant, F.; Tomić, S. Manning free counterion fraction for a rodlike polyion: Aqueous solutions of short DNA fragments in presence of very low added salt. Phys. Rev. E 2011, 83, 041803. [Google Scholar] [CrossRef] [PubMed]
- Poland, D.; Scheraga, H.A. Occurrence of a Phase Transition in Nucleic Acid Models. J. Chem. Phys. 1966, 45, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Jost, D.; Everaers, R. A Unified Poland-Scheraga Model of Oligo- and Polynucleotide DNA Melting: Salt Effects and Predictive Power. Biophys. J. 2009, 96, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Theodorakopoulos, N. Melting of genomic DNA: Predictive modeling by nonlinear lattice dynamics. Phys. Rev. E 2010, 82, 021905. [Google Scholar] [CrossRef]
- Rouzina, I.; Bloomfield, V.A. Force-Induced Melting of the {DNA} Double Helix 1. Thermodynamic Analysis. Biophys. J. 2001, 80, 882–893. [Google Scholar] [CrossRef]
- Rouzina, I.; Bloomfield, V.A. Force-Induced Melting of the {DNA} Double Helix. 2. Effect of Solution Conditions. Biophys. J. 2001, 80, 894–900. [Google Scholar] [CrossRef]
- Wenner, J.R.; Williams, M.C.; Rouzina, I.; Bloomfield, V.A. Salt Dependence of the Elasticity and Overstretching Transition of Single {DNA} Molecules. Biophys. J. 2002, 82, 3160–3169. [Google Scholar] [CrossRef]
- Shokri, L.; McCauley, M.J.; Rouzina, I.; Williams, M.C. {DNA} Overstretching in the Presence of Glyoxal: Structural Evidence of Force-Induced {DNA} Melting. Biophys. J. 2008, 95, 1248–1255. [Google Scholar] [CrossRef]
- Williams, M.C.; Wenner, J.R.; Rouzina, I.; Bloomfield, V.A. Effect of pH on the Overstretching Transition of Double-Stranded DNA: Evidence of Force-Induced {DNA} Melting. Biophys. J. 2001, 80, 874–881. [Google Scholar] [CrossRef]
- Vallone, P.M.; Paner, T.M.; Hilario, J.; Lane, M.J.; Faldasz, B.D.; Benight, A.S. Melting studies of short DNA hairpins: Influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability. Biopolymers 1999, 50, 425–442. [Google Scholar] [CrossRef]
- Blommers, M.J.J.; Walters, J.A.L.I.; Haasnoot, C.A.G.; Aelen, J.M.A.; Van der Marel, G.A.; Van Boom, J.H.; Hilbers, C.W. Effects of base sequence on the loop folding in DNA hairpins. Biochemistry 1989, 28, 7491–7498. [Google Scholar] [CrossRef] [PubMed]
- Antao, V.P.; Lai, S.Y.; Tinoco, I. A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res. 1991, 19, 5901–5905. [Google Scholar] [CrossRef] [PubMed]
- Stellwagen, E.; Muse, J.M.; Stellwagen, N.C. Monovalent Cation Size and DNA Conformational Stability. Biochemistry 2011, 50, 3084–3094. [Google Scholar] [CrossRef] [PubMed]
- Bockelmann, U.; Essevaz-Roulet, B.; Heslot, F. Molecular Stick-Slip Motion Revealed by Opening DNA with Piconewton Forces. Phys. Rev. Lett. 1997, 79, 4489–4492. [Google Scholar] [CrossRef]
- Bockelmann, U.; Essevaz-Roulet, B.; Heslot, F. DNA strand separation studied by single molecule force measurements. Phys. Rev. E 1998, 58, 2386–2394. [Google Scholar] [CrossRef]
- Kidoaki, S.; Yoshikawa, K. Folding and unfolding of a giant duplex-DNA in a mixed solution with polycations, polyanions and crowding neutral polymers. Biophys. Chem. 1999, 76, 133–143. [Google Scholar] [CrossRef]
- Ritort, F. Single-molecule experiments in biological physics: Methods and applications. J. Phys. Condens. Matter 2006, 18, R531. [Google Scholar] [CrossRef]
- Hatch, K.; Danilowicz, C.; Coljee, V.; Prentiss, M. Measurement of the salt-dependent stabilization of partially open DNA by Escherichia coli SSB protein. Nucleic Acids Res. 2008, 36, 294–299. [Google Scholar] [CrossRef]
- Huguet, J.M.; Bizarro, C.V.; Forns, N.; Smith, S.B.; Bustamante, C.; Ritort, F. Single-molecule derivation of salt dependent base-pair free energies in DNA. Proc. Natl. Acad. Sci. USA 2010, 107, 15431–15436. [Google Scholar] [CrossRef]
- Bosco, A.; Camunas-Soler, J.; Ritort, F. Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Res. 2014, 42, 2064–2074. [Google Scholar] [CrossRef] [PubMed]
- Kosikov, K.M.; Gorin, A.A.; Zhurkin, V.B.; Olson, W.K. {DNA} stretching and compression: Large-scale simulations of double helical structures1. J. Mol. Biol. 1999, 289, 1301–1326. [Google Scholar] [CrossRef] [PubMed]
- Podgornik, R.; Hansen, P.L.; Parsegian, V.A. Elastic moduli renormalization in self-interacting stretchable polyelectrolytes. J. Chem. Phys. 2000, 113, 9343–9350. [Google Scholar] [CrossRef]
- Wynveen, A.; Likos, C.N. Interactions between planar polyelectrolyte brushes: Effects of stiffness and salt. Soft Matter 2010, 6, 163–171. [Google Scholar] [CrossRef]
- Romano, F.; Chakraborty, D.; Doye, J.P.K.; Ouldridge, T.E.; Louis, A.A. Coarse-grained simulations of DNA overstretching. J. Chem. Phys. 2013, 138, 085101. [Google Scholar] [CrossRef] [PubMed]
- Snodin, B.E.K.; Randisi, F.; Mosayebi, M.; Šulc, P.; Schreck, J.S.; Romano, F.; Ouldridge, T.E.; Tsukanov, R.; Nir, E.; Louis, A.A.; et al. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 2015, 142, 234901. [Google Scholar] [CrossRef]
- Amnuanpol, S. Ionic effects on the temperature–force phase diagram of DNA. J. Biol. Phys. 2017, 43, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, T.; Sarkar, M.; Ratilainen, T.; Wittung, P.; Nielsen, P.E.; Norden, B.; Graslund, A. Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes. J. Am. Chem. Soc. 1996, 118, 5544–5552. [Google Scholar] [CrossRef]
- Khimji, I.; Shin, J.; Liu, J. DNA duplex stabilization in crowded polyanion solutions. Chem. Commun. 2013, 49, 1306–1308. [Google Scholar] [CrossRef]
- Maity, A.; Singh, A.; Singh, N. Differential stability of DNA based on salt concentration. Eur. Biophys. J. 2017, 46, 33–40. [Google Scholar] [CrossRef]
- Sokolov, P.A.; Ramazanov, R.R.; Rolich, V.I.; Popova, M.A.; Shalygin, V.E.; Kasyanenko, N.A. Stabilization of DNA by sodium and magnesium ions during the synthesis of DNA-bridged gold nanoparticles. Nanotechnology 2020, 32, 045604. [Google Scholar] [CrossRef] [PubMed]
- Fulton, A.B. How crowded is the cytoplasm? Cell 1982, 30, 345–347. [Google Scholar] [CrossRef]
- Zimmerman, S.B.; Minton, A.P. Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 27–65. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, D.; Sugimoto, N. Molecular crowding effects on structure and stability of DNA. Biochimie 2008, 90, 1040–1051. [Google Scholar] [CrossRef]
- Hancock, R. Structures and functions in the crowded nucleus: New biophysical insights. Front. Phys. 2014, 2, 53. [Google Scholar] [CrossRef]
- Skóra, T.; Vaghefikia, F.; Fitter, J.; Kondrat, S. Macromolecular Crowding: How Shape and Interactions Affect Diffusion. J. Phys. Chem. B 2020, 124, 7537–7543. [Google Scholar] [CrossRef]
- Ellis, R. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 2001, 26, 597–604. [Google Scholar] [CrossRef]
- Ellis, R. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 2001, 11, 114–119. [Google Scholar] [CrossRef]
- Pincus, D.L.; Thirumalai, D. Force-Induced Unzipping Transitions in an Athermal Crowded Environment. J. Phys. Chem. B 2013, 117, 13107–13114. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Miyoshi, D.; Sugimoto, N. Effects of Molecular Crowding on the Structures, Interactions, and Functions of Nucleic Acids. Chem. Rev. 2014, 114, 2733–2758. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N. DNA melting in the presence of molecular crowders. Phys. Chem. Chem. Phys. 2017, 19, 19452–19460. [Google Scholar] [CrossRef]
- Spink, C.H.; Garbett, N.; Chaires, J.B. Enthalpies of {DNA} melting in the presence of osmolytes. Biophys. Chem. 2007, 126, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Harve, K.S.; Lareu, R.; Rajagopalan, R.; Raghunath, M. Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids–in silico predictions and in vitro evidence. Nucleic Acids Res. 2010, 38, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Karimata, H.; Ohmichi, T.; Kawakami, J.; Sugimoto, N. The Effect of Molecular Crowding with Nucleotide Length and Cosolute Structure on DNA Duplex Stability. J. Am. Chem. Soc. 2004, 126, 14330–14331. [Google Scholar] [CrossRef] [PubMed]
- Harp, J.M.; Coates, L.; Sullivan, B.; Egli, M. Water structure around a left-handed Z-DNA fragment analyzed by cryo neutron crystallography. Nucleic Acids Res. 2021, 49, 4782–4792. [Google Scholar] [CrossRef] [PubMed]
- Spink, C.H.; Chaires, J.B. Effects of Hydration, Ion Release, and Excluded Volume on the Melting of Triplex and Duplex DNA. Biochemistry 1999, 38, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Spink, C.H.; Chaires, J.B. Selective Stabilization of Triplex DNA by Poly(ethylene glycols). J. Am. Chem. Soc. 1995, 117, 12887–12888. [Google Scholar] [CrossRef]
- Karimata, H.; Nakano, S.; Sugimoto, N. Effects of Polyethylene Glycol on DNA Duplex Stability at Different NaCl Concentrations. Bull. Chem. Soc. Jpn. 2007, 80, 1987–1994. [Google Scholar] [CrossRef]
- Fujimoto, T.; Nakano, S.; Sugimoto, N.; Miyoshi, D. Thermodynamics-Hydration Relationships within Loops That Affect G-Quadruplexes under Molecular Crowding Conditions. J. Phys. Chem. B 2013, 117, 963–972. [Google Scholar] [CrossRef]
- Moriyama, R.; Iwasaki, Y.; Miyoshi, D. Stabilization of DNA Structures with Poly(ethylene sodium phosphate). J. Phys. Chem. B 2015, 119, 11969–11977. [Google Scholar] [CrossRef]
- Goodrich, G.P.; Helfrich, M.R.; Overberg, J.J.; Keating, C.D. Effect of Macromolecular Crowding on DNA:Au Nanoparticle Bioconjugate Assembly. Langmuir 2004, 20, 10246–10251. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Takahashi, S.; Ohyama, T.; Endoh, T.; Tateishi-Karimata, H.; Sugimoto, N. Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 14194–14201. [Google Scholar] [CrossRef]
- Morimoto, R.; Horita, M.; Yamaguchi, D.; Nakai, H.; Nakano, S.I. Evaluation of weak interactions of proteins and organic cations with DNA duplex structures. Biophys. J. 2022, 121, 2873–2881. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Zhou, H.X. Generalized fundamental measure theory for atomistic modeling of macromolecular crowding. Phys. Rev. E 2010, 81, 031919. [Google Scholar] [CrossRef]
- Mittal, J.; Best, R.B. Dependence of Protein Folding Stability and Dynamics on the Density and Composition of Macromolecular Crowders. Biophys. J. 2010, 98, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Tsao, D.; Dokholyan, N.V. Macromolecular crowding induces polypeptide compaction and decreases folding cooperativity. Phys. Chem. Chem. Phys. 2010, 12, 3491–3500. [Google Scholar] [CrossRef]
- Batra, J.; Xu, K.; Zhou, H.X. Nonadditive effects of mixed crowding on protein stability. Proteins Struct. Funct. Bioinform. 2009, 77, 133–138. [Google Scholar] [CrossRef]
- Singh, A.R.; Giri, D.; Kumar, S. Effects of molecular crowding on stretching of polymers in poor solvent. Phys. Rev. E 2009, 79, 051801. [Google Scholar] [CrossRef]
- Yuan, J.M.; Chyan, C.L.; Zhou, H.X.; Chung, T.Y.; Peng, H.; Ping, G.; Yang, G. The effects of macromolecular crowding on the mechanical stability of protein molecules. Protein Sci. 2008, 17, 2156–2166. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, G. Stretching single stranded DNA. Soft Matter 2011, 7, 4595–4605. [Google Scholar] [CrossRef]
- Liu, Y.; Kermanpour, F.; Liu, H.L.; Hu, Y.; Shang, Y.Z.; Sandler, S.I.; Jiang, J.W. Molecular Thermodynamic Model for DNA Melting in Ionic and Crowded Solutions. J. Phys. Chem. B 2010, 114, 9905–9911. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shang, Y.; Liu, H.; Hu, Y.; Jiang, J. Crowding effect on DNA melting: A molecular thermodynamic model with explicit solvent. Phys. Chem. Chem. Phys. 2012, 14, 15400–15405. [Google Scholar] [CrossRef] [PubMed]
- Brackley, C.A.; Cates, M.E.; Marenduzzo, D. Intracellular Facilitated Diffusion: Searchers, Crowders, and Blockers. Phys. Rev. Lett. 2013, 111, 108101. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Schreck, J.S.; Šulc, P. Understanding DNA interactions in crowded environments with a coarse-grained model. Nucleic Acids Res. 2020, 48, 10726–10738. [Google Scholar] [CrossRef]
- Zoli, M. DNA size in confined environments. Phys. Chem. Chem. Phys. 2019, 21, 12566–12575. [Google Scholar] [CrossRef]
- Kuznetsova, I.M.; Turoverov, K.K.; Uversky, V.N. What Macromolecular Crowding Can Do to a Protein. Int. J. Mol. Sci. 2014, 15, 23090–23140. [Google Scholar] [CrossRef]
- Minton, A.P. Effect of a Concentrated “Inert” Macromolecular Cosolute on the Stability of a Globular Protein with Respect to Denaturation by Heat and by Chaotropes: A Statistical-Thermodynamic Model. Biophys. J. 2000, 78, 101–109. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Li, N.; He, X.; Liang, H. Denaturation and renaturation behaviors of short DNA in a confined space. J. Chem. Phys. 2014, 141, 044911. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Giri, D.; Nath, S. Statistical mechanics of a polymer chain attached to the interface of a cone-shaped channel. EPL Europhys. Lett. 2017, 118, 28001. [Google Scholar] [CrossRef]
- Turner, S.W.P.; Cabodi, M.; Craighead, H.G. Confinement-Induced Entropic Recoil of Single DNA Molecules in a Nanofluidic Structure. Phys. Rev. Lett. 2002, 88, 128103. [Google Scholar] [CrossRef]
- Franceschini, L.; Brouns, T.; Willems, K.; Carlon, E.; Maglia, G. DNA Translocation through Nanopores at Physiological Ionic Strengths Requires Precise Nanoscale Engineering. ACS Nano 2016, 10, 8394–8402. [Google Scholar] [CrossRef]
- Akabayov, B.; Akabayov, S.; Lee, S.; Wagner, G.; Richardson, C. Impact of macromolecular crowding on DNA replication. Nat. Commun. 2013, 4, 1615. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Lansac, Y.; Glaser, M.A.; Maiti, P.K. Biopolymers in nanopores: Challenges and opportunities. Soft Matter 2011, 7, 5898–5907. [Google Scholar] [CrossRef]
- Nakano, S.; Yamaguchi, D.; Sugimoto, N. Thermal stability and conformation of DNA and proteins under the confined condition in the matrix of hydrogels. Mol. Biol. Rep. 2018, 45, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Zoli, M. Stretching DNA in hard-wall potential channels. EPL Europhys. Lett. 2020, 130, 28002. [Google Scholar] [CrossRef]
- Derrington, I.M.; Butler, T.Z.; Collins, M.D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J.H. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. USA 2010, 107, 16060–16065. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.; Lightstone, F.; Colvin, M. Dynamics of DNA Encapsulated in a Hydrophobic Nanotube. Chem. Phys. Lett. 2005, 412, 82–87. [Google Scholar] [CrossRef]
- Mogurampelly, S.; Maiti, P.K. Translocation and encapsulation of siRNA inside carbon nanotubes. J. Chem. Phys. 2013, 138, 034901. [Google Scholar] [CrossRef]
- Wanunu, M. Nanopores: A journey towards DNA sequencing. Phys. Life Rev. 2012, 9, 125–158. [Google Scholar] [CrossRef]
- Singer, A.; Rapireddy, S.; Ly, D.H.; Meller, A. Electronic Barcoding of a Viral Gene at the Single-Molecule Level. Nano Lett. 2012, 12, 1722–1728. [Google Scholar] [CrossRef]
- Bell, N.A.; Keyser, U.F. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat. Nanotechnol. 2016, 11, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Bell, N.; Chen, K.; Ghosal, S.; Ricci, M.; Keyser, U. Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat. Commun. 2017, 8, 380. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.; Howorka, S.; Siwy, Z.S. DNA Strands Attached Inside Single Conical Nanopores: Ionic Pore Characteristics and Insight into DNA Biophysics. J Membr. Biol. 2011, 239, 105. [Google Scholar] [CrossRef] [PubMed]
- Morrin, G.T.; Kienle, D.F.; Schwartz, D.K. Diffusion of Short Semiflexible DNA Polymer Chains in Strong and Moderate Confinement. ACS Macro Lett. 2021, 10, 1191–1195. [Google Scholar] [CrossRef]
- Jonchhe, S.; Pandey, S.; Karna, D.; Pokhrel, P.; Cui, Y.; Mishra, S.; Sugiyama, H.; Endo, M.; Mao, H. Duplex DNA Is Weakened in Nanoconfinement. J. Am. Chem. Soc. 2020, 142, 10042–10049. [Google Scholar] [CrossRef]
- Jour Putnam, D. Polymers for gene delivery across length scales. Nat. Mater. 2006, 5, 1476–4660. [Google Scholar] [CrossRef]
- Dharmadi, Y.; Gonzalez, R. DNA Microarrays: Experimental Issues, Data Analysis, and Application to Bacterial Systems. Biotechnol. Prog. 2004, 20, 1309–1324. [Google Scholar] [CrossRef]
- Yurke, B.; Turberfield, A.J.; Mills, A.P.; Simmel, F.C.; Neumann, J.L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605–608. [Google Scholar] [CrossRef]
- Murphy, J.C.; Cano, T.; Fox, G.E.; Willson, R.C. Compaction Agent Protection of Nucleic Acids during Mechanical Lysis. Biotechnol. Prog. 2006, 22, 519–522. [Google Scholar] [CrossRef]
- de Lima, M.C.P.; Simões, S.; Pires, P.; Faneca, H.; Düzgüneş, N. Cationic lipid–DNA complexes in gene delivery: From biophysics to biological applications. Adv. Drug Deliv. Rev. 2001, 47, 277–294. [Google Scholar] [CrossRef]
- Goh, S.L.; Murthy, N.; Xu, M.; Fréchet, J.M.J. Cross-Linked Microparticles as Carriers for the Delivery of Plasmid DNA for Vaccine Development. Bioconjugate Chem. 2004, 15, 467–474. [Google Scholar] [CrossRef] [PubMed]
- des Rieux, A.; Shikanov, A.; Shea, L.D. Fibrin hydrogels for non-viral vector delivery in vitro. J. Control. Release 2009, 136, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Haladjova, E.; Rangelov, S.; Tsvetanov, C.B.; Pispas, S. DNA encapsulation via nanotemplates from cationic block copolymer micelles. Soft Matter 2012, 8, 2884–2889. [Google Scholar] [CrossRef]
- Csaba, N.; Caamaño, P.; Sánchez, A.; Domínguez, F.; Alonso, M.J. PLGA:Poloxamer and PLGA:Poloxamine Blend Nanoparticles: New Carriers for Gene Delivery. Biomacromolecules 2005, 6, 271–278. [Google Scholar] [CrossRef]
- Dimitrov, I.V.; Petrova, E.B.; Kozarova, R.G.; Apostolova, M.D.; Tsvetanov, C.B. A mild and versatile approach for DNA encapsulation. Soft Matter 2011, 7, 8002–8004. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, J.E.; Oh, J.M.; Shul, Y.G.; Choy, J.H. DNA Core@Inorganic Shell. J. Am. Chem. Soc. 2010, 132, 16735–16736. [Google Scholar] [CrossRef]
- Cruz, F.J.A.L.; de Pablo, J.J.; Mota, J.P.B. Endohedral confinement of a DNA dodecamer onto pristine carbon nanotubes and the stability of the canonical B form. J. Chem. Phys. 2014, 140, 225103. [Google Scholar] [CrossRef]
- Cruz, F.J.; de Pablo, J.J.; Mota, J.P. Nanoscopic Characterization of DNA within Hydrophobic Pores: Thermodynamics and Kinetics. Biochem. Eng. J. 2015, 104, 41–47. [Google Scholar] [CrossRef]
- Maity, A.; Singh, N. Melting of DNA in confined geometries. Eur. Biophys. J. 2020, 49, 561–569. [Google Scholar] [CrossRef]
- Maity, A.; Mathur, N.; Imhof, P.; Singh, N. Structural Analysis of DNA molecule in a confined shell. arXiv 2022, arXiv:2202.02084. [Google Scholar] [CrossRef]
- Reisner, W.; Pedersen, J.N.; Austin, R.H. DNA confinement in nanochannels: Physics and biological applications. Rep. Prog. Phys. 2012, 75, 106601. [Google Scholar] [CrossRef] [PubMed]
- Inman, R.B. A denaturation map of the lambda phage DNA molecule determined by electron microscopy. J. Mol. Biol. 1966, 18, 464. [Google Scholar] [CrossRef]
- Reisner, W.; Larsen, N.B.; Silahtaroglu, A.; Kristensen, A.; Tommerup, N.; Tegenfeldt, J.O.; Flyvbjerg, H. Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc. Natl. Acad. Sci. USA 2010, 107, 13294–13299. [Google Scholar] [CrossRef] [PubMed]
- Maity, A.; Singh, A.; Singh, N. Stability of DNA passing through different geometrical pores. EPL Europhys. Lett. 2019, 127, 28001. [Google Scholar] [CrossRef]
- Tu, B.; Bai, S.; Lu, B.; Fang, Q. Conic shapes have higher sensitivity than cylindrical ones in nanopore DNA sequencing. Sci. Rep. 2018, 8, 2045–2322. [Google Scholar] [CrossRef] [PubMed]
- Ranton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; Benner, S.A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153. [Google Scholar] [CrossRef]
- Elizabeth, A.M.; Derrington, I.M.; Laszlo, A.H.; Langford, K.W.; Hopper, M.K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J.H. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 2012, 30, 349–353. [Google Scholar]
- Kumar, S.; Tao, C.; Chien, M.; Hellner, B.; Balijepalli, A.; Robertson, J.W.; Li, Z.; Russo, J.J.; Reiner, J.E.; Kasianowicz, J.J.; et al. PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis. Sci. Rep. 2012, 2, 684. [Google Scholar] [CrossRef]
- Fuller, C.W.; Kumar, S.; Porel, M.; Chien, M.; Bibillo, A.; Stranges, P.B.; Dorwart, M.; Tao, C.; Li, Z.; Guo, W.; et al. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proc. Natl. Acad. Sci. USA 2016, 113, 5233–5238. [Google Scholar] [CrossRef]
- Akeson, M.; Branton, D.; Kasianowicz, J.J.; Brandin, E.; Deamer, D.W. Microsecond Time-Scale Discrimination Among Polycytidylic Acid, Polyadenylic Acid, and Polyuridylic Acid as Homopolymers or as Segments Within Single RNA Molecules. Biophys. J. 1999, 77, 3227–3233. [Google Scholar] [CrossRef]
- Muthukumar, M. Communication: Charge, diffusion, and mobility of proteins through nanopores. J. Chem. Phys. 2014, 141, 081104. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, M. Theory of capture rate in polymer translocation. J. Chem. Phys. 2010, 132, 195101. [Google Scholar] [CrossRef]
- Rollings, R.; Graef, E.; Walsh, N.; Nandivada, S.; Benamara, M.; Li, J. The effects of geometry and stability of solid-state nanopores on detecting single DNA molecules. Nanotechnology 2015, 26, 044001. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, Bala Murali; Bashir, Rashid Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 1–33. [CrossRef]
- Majd, S.; Erik C, Y.; Yazan N, B.; Michael X, M.; Jerry, Y.; Michael, M. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr. Opin. Biotechnol. 2010, 21, 439–476. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.F.; Kowalczyk, S.W.; Calado, V.E.; Pandraud, G.; Zandbergen, H.W.; Vandersypen, L.M.K.; Dekker, C. DNA Translocation through Graphene Nanopores. Nano Lett. 2010, 10, 3163–3167. [Google Scholar] [CrossRef]
- Merchant, C.A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M.D.; Venta, K.; Luo, Z.; Johnson, A.T.C.; et al. DNA Translocation through Graphene Nanopores. Nano Lett. 2010, 10, 2915–2921. [Google Scholar] [CrossRef]
- Heng, J.; Aksimentiev, A.; Ho, C.; Marks, P.; Grinkova, Y.; Sligar, S.; Schulten, K.; Timp, G. The Electromechanics of DNA in a Synthetic Nanopore. Biophys. J. 2006, 90, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Henrickson, S.E.; Misakian, M.; Robertson, B.; Kasianowicz, J.J. Driven DNA Transport into an Asymmetric Nanometer-Scale Pore. Phys. Rev. Lett. 2000, 85, 3057–3060. [Google Scholar] [CrossRef] [PubMed]
- Henrickson, S.E.; DiMarzio, E.A.; Wang, Q.; Stanford, V.M.; Kasianowicz, J.J. Probing single nanometer-scale pores with polymeric molecular rulers. J. Chem. Phys. 2010, 132, 135101. [Google Scholar] [CrossRef] [PubMed]
- Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. [Google Scholar] [CrossRef]
- Perera, R.T.; Fleming, A.M.; Johnson, R.P.; Burrows, C.J.; White, H.S. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore. Nanotechnology 2015, 26, 074002. [Google Scholar] [CrossRef] [PubMed]
- An, N.; White, H.S.; Burrows, C.J. Modulation of the current signatures of DNA abasic site adducts in the [small alpha]-hemolysin ion channel. Chem. Commun. 2012, 48, 11410–11412. [Google Scholar] [CrossRef]
- An, N.; Fleming, A.M.; White, H.S.; Burrows, C.J. Nanopore Detection of 8-Oxoguanine in the Human Telomere Repeat Sequence. ACS Nano 2015, 9, 4296–4307. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Y.; Deng, T.; Chen, Q. Solid-State Nanopore-Based DNA Sequencing Technology. J. Nanomater. 2016, 13, 1. [Google Scholar]
- Marshall, M.M.; Yang, J.; Hall, A.R. Direct and Transmission Milling of Suspended Silicon Nitride Membranes With a Focused Helium Ion Beam. Scanning 2012, 34, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, B.M.; Shah, A.B.; Zuo, J.; Bashir, R. DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Adv. Funct. Mater. 2010, 20, 1266–1275. [Google Scholar] [CrossRef]
- Postma, H.W.C. Rapid Sequencing of Individual DNA Molecules in Graphene Nanogaps. Nano Lett. 2010, 10, 420–425. [Google Scholar] [CrossRef]
- Saha, K.K.; Drndić, M.; Nikolić, B.K. DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore. Nano Lett. 2012, 12, 50–55. [Google Scholar] [CrossRef]
- Purnell, R.F.; Schmidt, J.J. Discrimination of Single Base Substitutions in a DNA Strand Immobilized in a Biological Nanopore. ACS Nano 2009, 3, 2533–2538. [Google Scholar] [CrossRef]
- Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA 2000, 97, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Kwok, H.; Briggs, K.; Tabard-Cossa, V. Nanopore Fabrication by Controlled Dielectric Breakdown. PLoS ONE 2014, 9, e092880. [Google Scholar] [CrossRef] [PubMed]
- Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J.A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Price, N.E.; Fang, X.; Yang, Z.; Gu, L.Q.; Gates, K.S. Characterization of Interstrand DNA–DNA Cross-Links Using the α-Hemolysin Protein Nanopore. ACS Nano 2015, 9, 11812–11819. [Google Scholar] [CrossRef]
- Song, L.; Hobaugh, M.R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J.E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859–1865. [Google Scholar] [CrossRef]
- Deamer, D.W.; Branton, D. Characterization of Nucleic Acids by Nanopore Analysis. Accounts Chem. Res. 2002, 35, 817–825. [Google Scholar] [CrossRef]
- Mathé, J.; Visram, H.; Viasnoff, V.; Rabin, Y.; Meller, A. Nanopore Unzipping of Individual DNA Hairpin Molecules. Biophys. J. 2004, 87, 3205–3212. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, X.; Liu, S.C.; Ying, Y.L.; Li, Q.; Gao, R.; Fathi, F.; Long, Y.T.; Tian, H. Characterization of DNA duplex unzipping through a sub-2 nm solid-state nanopore. Chem. Commun. 2017, 53, 3539–3542. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Maity, A.; Singh, N. Structure and Dynamics of dsDNA in Cell-like Environments. Entropy 2022, 24, 1587. https://doi.org/10.3390/e24111587
Singh A, Maity A, Singh N. Structure and Dynamics of dsDNA in Cell-like Environments. Entropy. 2022; 24(11):1587. https://doi.org/10.3390/e24111587
Chicago/Turabian StyleSingh, Amar, Arghya Maity, and Navin Singh. 2022. "Structure and Dynamics of dsDNA in Cell-like Environments" Entropy 24, no. 11: 1587. https://doi.org/10.3390/e24111587
APA StyleSingh, A., Maity, A., & Singh, N. (2022). Structure and Dynamics of dsDNA in Cell-like Environments. Entropy, 24(11), 1587. https://doi.org/10.3390/e24111587